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Abstract 
This paper focuses on methods for assessing the robustness of hinged bar systems, considering 

truss structures as an example. They are the simplest in terms of computation, but make it possible 
to fully illustrate the proposed approach. 

The paper considers a well-known method of robustness assessment using a redundancy matrix 
determined by the forces that must be applied to assemble the system from elements with the 
length different from the design one. This method is opposed to the use of a projection matrix, the 
main diagonal elements of which indicate the degree of participation of the bars in ensuring 
robustness. The main properties of the idempotent projection matrix are considered. The paper 
illustrates the possibility of recalculating the projection matrix for the changed system with the 
help of the Jordan elimination step. A simple example demonstrates assembling and changing the 
projection matrix. 

In addition to the failure of the bar, the case of its damage (partial failure) is also considered, it 
is shown how it affects the change in the projector and the redistribution of internal forces. 

Keywords: Robustness, Progressive collapse, Robustness measure, Design matrix, 
Participation factors. 
 

1. Introduction 
Studying the response of a structure to possible catastrophic events and 

checking its robustness has now become an almost mandatory part of the 
design process. This made the engineers question some of the main ideas of 
the traditional approach to analysis, in particular, the orientation towards 
assessing the behavior of a structure under given actions, using the statistical 
properties of loads and materials to determine the failure probability, etc.  

Catastrophic events that entail severe consequences are extremely rare and 
there is not enough statistical data for them. Therefore, the main approach is to 
shift attention from external actions to possible damage to the building 
structure. The relative novelty of this approach has created a certain confusion 
of such basic concepts as “progressive collapse”, “disproportionate collapse” 
and “robustness”. The phenomena they describe are very close, but do not 
coincide, and the mentioned concepts are not synonymous. Therefore, it is 
useful to consider their similarities and differences. 

In this paper, the robustness of the system is considered as the main 
characteristic of the behavior of the system with initial damage. Quantitative 
assessment of robustness should be based on a comparison of the size and 
extent of the initial damage or the corresponding consequences [22, 8]. 
Various measures of robustness assessment have been proposed, based on 
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some characteristic features that distinguish structural behavior in case of 
damage. Starossec U. and Haberland M. [17] introduced an energy-based 
metric based on the evaluation of the renewable energy required for damage 
propagation. In parallel, they suggested a stiffness-based measure that 
accounts for the ratio between the determinant of the stiffness matrix of the 
structure deprived of the damaged element (or connection) and the 
determinant of stiffness matrix of the undamaged structure. Baker et al. [2] 
proposed to measure the fraction of total system risk resulting from 
component failure. Biondini et al. [3] compared the effectiveness of various 
structural performance indicators and found that the ratios between either 
displacements or stored energies in the undamaged and damaged 
configurations are suitable for damage-tolerance analysis. 

All of the above proposals were related to the assessment of the measure of 
system robustness and only to a small extent evaluated the contribution of 
elements, and this contribution was sequentially calculated for the elements of 
the systems and did not make it possible to simultaneously rank and compare 
the contributions of all elements. 

An effective assessment of the role of elements in providing robustness is 
important at the conceptual design stage, especially for structures characterized 
by a high degree of static indeterminacy. And since the failure of an element is 
not necessarily related to an accidental action, and can be caused by human 
errors or poor workmanship, ranking allows you to indicate the places where 
you need to pay greater attention to the quality of work and justify the 
appropriate control procedures. And, finally, ranking helps to build a strategy 
for protection against accidental actions. 

This is possible with the method for estimating contributions considered in 
this paper, which is based on using a projection matrix invariant with respect 
to the loading of the system and the stiffness properties of its elements. 

2. Robustness and Progressive Collapse – Similarities and Differences 
The very term “progressive collapse” is not very accurate, because it 

describes not the result, but rather the characteristic of the process, the nature 
of the collapse, which does not necessarily have the form of an avalanche-like 
expansion of the damage area up to a complete loss of system connectivity. 
But the term “disproportionate collapse” is more accurate, since it directly 
refers to the disproportionate scale of destruction compared to the primary 
structural damage, or in other words, to the discrepancy between the scale of 
accidental actions and their consequences. 

Generally speaking, not every disproportionate collapse is progressive, and 
not every progressive collapse is disproportionate. That is, disproportionate 
collapse can occur with the sequential failure of elements one after another, in 
which case it will be progressive, or with an instant collapse of the entire 
structure. On the other hand, a large-scale progressive collapse may or may not 
become disproportionately large depending on whether the chain of failures 
stopped before a complete collapse. 

The collapse of the World Trade Center towers in New York, which is often 
cited as an example, cannot reasonably be called disproportionate, since the 
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initial impact was very large. In other words, disproportionate collapse 
describes the consequences of a local damage, while progressive collapse 
describes the mechanism of failure propagation. In addition, disproportionate 
collapse should not be confused with a general collapse due to a strong 
earthquake, wind, hurricane, etc. when a whole series of simultaneous failures 
is possible (Fig. 1).  
 

 
Fig. 1 

 
Progressive (disproportionate) collapse stability analysis is usually 

identified with the robustness analysis [23, 9, 12]. This is how the situation is 
described, for example, in ISO 2394:2015, which provides the following 
definition: “Structural integrity (structural robustness): Ability of a structure 
not to be damaged by events like fire, explosions, impact or consequences of 
human errors, to an extent disproportionate to the original cause”.  

But the very concept of robustness can have a broader meaning; it makes it 
possible to describe the properties of damaged structures more adequately. 
From the general technical view robustness is defined as “the property of a 
structure to maintain limited operability under external actions leading to 
failures of its component parts”.  

Considered in this way, robustness takes into account not only the 
possibility of progressive collapse, but also all other possible losses of the 
system functionality in case of failure of individual elements. For example, for 
structures whose functional purpose is to provide strength, the safety factor 
value can serve as a functional characteristic, for oscillatory systems – the 
natural frequencies of free vibrations, for precision objects – shape accuracy 
and stability. 

The definition of robustness as the ability of a structure to perform its main 
functions, despite the damage received, seems more reasonable, since in many 
cases, the loss of functionality may not be due to the failure propagation, as 
evidenced by numerous examples. Thus, just the failure of one span of a multi-
span bridge crossing can lead to the complete loss of its functionality, and just 
one wire break is enough to stop electric power transmission. Functioning of 
both of these systems depends on their connectivity. The same applies to the 
need to preserve continuity – it is necessary to assess the possibility of the tank 
operation, where a hole in the wall or bottom can lead to its complete 
inoperability. 
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Progressive (disproportionate) collapse is characterized by the following 
features: 

- abnormal event causing accidental (identifiable and/or unidentifiable) 
actions; 

- local failure of an individual structural member, causing the collapse of a 
part of the structural system; 

- disproportionately large scale of negative consequences compared to the 
local failure that caused them. 

Fig. 2 gives a good idea of the essence of the phenomenon. It shows a well-
known formula for the probability of collapse P[Collapse] as a product of 
probabilities, where P[Н] is the probability of occurrence of hazard Н; P[D|H] 
is the conditional probability of a local failure given the occurrence of hazard 
Н; P[Collapse|D] is the conditional probability of occurrence of a collapse 
given the occurrence of the local failure D.  
 

 
Fig. 2 

 
Notes to the probabilistic formula clarify the role of the system, its element 

and the environment, and also indicate the relationship between the basic 
concepts and the individual elements of this formula. And it should be noted 
right away that, as shown in the figure, invulnerability is not synonymous with 
robustness. Vulnerability can characterize both an element and a system, and 
robustness is a quality inherent only in the load-bearing system as a whole 
[18]. The vulnerability of a structure may vary depending on various hazards, 
i.e. the structure may be vulnerable to vehicle impacts, but not to seismic 
loads, while robustness will be the same for both hazards. 

Literature related to the problem of robustness often uses the concept of 
redundancy of a design model, which is defined as the ability to redistribute 
loads between its elements, creating an alternative load transfer path or using 
other methods of protection. Their redundancy is primarily related to static 
indeterminacy, but it can also be determined by additional safety margins 
(design of key elements), plastic structural behavior providing the ability to 
absorb energy, or special protection elements. 

It is important to clarify the goals when we say that we want to protect the 
structure from progressive collapse. It is often implied (usually implicitly) that 
our goal is to eliminate the possibility of progressive collapse. However, there 
are also other reasonable goals that can be and sometimes even have to be 
achieved.  

One of such goals can be for example the limitation of the scale of local 
damage. A protection strategy using partitioning is possible here, and typical 
examples are easily dropped partitions used for protection against explosions, 
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when by limiting the scale of destruction only to the mentioned partitions, we 
interrupt the chain of failures. Firewalls or fire breaks in a fire protection 
system can also be mentioned as an example here.  

Another goal is the limitation of the rate of development of the progressive 
collapse process. In fact, this is exactly what we are talking about when the fire 
resistance requirements (time to failure) are set taking into account the 
possibility of evacuating people from the fire zone (well, the building may 
collapse afterwards, although it is not desirable). 

Finally, destruction can be limited by the possibility of subsequent repair of 
damaged structures. In fact, the whole theory of seismic protection is based on 
this idea. 

3. Robustness Measure 
According to the review [10] dozens of quantitative indicators of structural 

robustness are known. They can be classified into dependent on the stress state 
that preceded the failure of the element, and invariant with respect to the 
system load [1]. The former include all measures based on risk assessment, 
strength analysis, etc., the latter are based on the analysis of topological and 
stiffness characteristics, and in this sense are more general.  

The analysis of the system properties invariant with respect to the stress 
state puts the focus on the structural analysis, the assessment of the role of 
individual parts of the structure and the ways of their interaction. It is related to 
the robustness study of systems whose local damage may occur due to 
unidentifiable accidental actions. In fact, the classical analysis of static 
geometric properties of bar systems designed for stable structures is developed 
here for the case of systems whose topology can change due to the failure of 
individual elements. 

In this paper, we will consider only the analysis of hinged-bar systems, 
which will allow us to focus on the fundamental issues of the methodology. 

The robustness of a bar system is directly related to static indeterminacy, 
and the degree of static indeterminacy is sometimes considered a measure of 
robustness. Despite the fact that the degree of static indeterminacy intuitively 
seems to be an ideal indicator of system safety [13], this metric provides only a 
necessary but not sufficient condition for robustness. A high degree of static 
indeterminacy does not mean a more robust structure (let’s just take critical 
elements of the structure, for example, the removal of which leads to 
geometric instability). 

In his works De Biagi [6, 5] related the robustness measure to the 
“complexity” of the system which is a metric based on the performance of the 
load paths through the structural scheme under an arbitrary loading and is 
estimated by the number of fundamental subsystems (geometrically stable 
main systems of the force method) that can be obtained for a given structure. 
As the degree of static indeterminacy increases, the number of fundamental 
subsystems increases at a faster rate, which requires special computational 
approaches. 
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The assembly of the system stiffness matrix involves both the topological 
and metric parameters of the system, therefore, its analysis was taken by many 
as the basis for developing the robustness measure.  

It was proposed to use the condition number k(K)1 of the stiffness matrix 
in [14, 15]. Since the condition number serves as a measure of the matrix 
proximity to degeneracy, and we want the stiffness matrix to be “far” from the 
set of irreversible degenerate matrices, an inverse value is used 

  1
1

S
n

k 
  

K K K
,                                      (1) 

where �  is the Euclidean matrix norm. S  is in the range from 0 to 1, with a 
higher value indicating a more robust system.  

A measure of importance is proposed to represent the contribution of a 
structural member to the robustness of the system. It was defined as a ratio of 
the determinant of normalized stiffness matrices of the undamaged structure K 
and that of the damaged structure iK . 

det .
deti

i
C  K

K
                                               (2) 

This indicator varies from 1 to infinity, and the higher its value, the more 
critical the i-th element is for the robustness of the system. Starossec and 
Haberland [19, 20] proposed a similar measure to assess the system as a whole 

detmin
detS

j j
R  K

K
,                                          (3) 

comparing the stiffness matrix of the undamaged structure and the structure 
damaged after the removal of j-th element.  

The robustness of the system, its ability to function (perhaps with some loss 
of quality) without any failed element, indicates that it has a certain 
“redundancy”, i.e. it has some safety margins that ensure the existence of 
alternative load transfer paths, and are based on its static indeterminacy. 

The assessment using a redundancy measure, proposed in [11], is 
quantitative. In this case, it becomes possible to assess the contribution of 
individual elements to ensuring robustness. The distribution of these 
contributions significantly depends on the geometric and topological properties 
of the structural complex. Depending on the geometric and topological 
relationships between the components of the system, material and cross-
section, each element has its own effect on robustness. It is worth knowing 
where there is redundancy in the system and where damage is unacceptable 
due to the lack of alternative load paths.  

The authors of [11] propose to perform the measurement of redundancy on 
the basis of the problem of assembling a truss system from elements with 
inaccurate length values. To resolve geometric discrepancies, it is necessary to 
adjust the geometric length of the elements and/or their connections, and 
therefore we need to apply some forces. It is assumed that these forces are 
closely related to the distribution of redundancy components in the structure 
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and can serve as an estimate of the role of elements in ensuring robustness. 
The sum of individual redundancy values of the elements, measured by a 
number from 0 to 1, is equal to the degree of static indeterminacy.  

It should be noted that the redundancy matrix presented in [11] is, in fact, 
one of the variants introduced in [24] and developed in [16] of projection 
matrices that reflect load-independent static-kinematic properties of a multi-
element statically indeterminate system. The use of projectors makes it 
possible to abandon the hypothesis that it is the assemblability that is the 
determining factor for assessing the contributions of individual elements to the 
robustness of the system. 

4. Static-Kinematic Analysis. Projectors 
In cases when the number of internal forces and displacements m exceeds 

the number of external unknowns n, the system of equilibrium equations, 
which has the following form in absence of external loads p 

Qs = 0,                                                    (4) 
allows a nontrivial solution 

s0 = Ax                                                    (5) 
with an arbitrary (mr)-dimensional column x. Matrix А represents forces in 
the principal system of the force method caused by unit values of unknowns х.  

Formula (5) defines a space of self-balanced forces s0, the dimension of 
which k = (m  r) is equal to the degree of static indeterminacy of the system. 
Forces obtained from (5) define the self-balanced stressed state at an arbitrary 
vector x. These forces are initial ones (prestresses), and they usually arise 
during the erection of the structure, including the elimination of the mentioned 
discrepancy between the geometry of the system and the lengths of its 
elements, which form the vector of residuals .  

Forces that have to be applied to the bars for this are determined by the 
matrix formula of the displacement method 

s = (I  FQTK1Q)F = (I  FМ)F,                           (6) 
where TK = QFQ  is the stiffness matrix of the system, F is the matrix 
relating the bar elongations  with the forces s (s=F), and М is the projection 
matrix 

  1T 1 T T  М = Q K Q Q QFQ Q ,                             (7) 

which was used in [11].  
Since we are interested in the static and kinematic properties of the system, 

and more precisely, only in the conditions when it loses its variability property, 
it is more convenient to use another projector that does not contain the bar 
stiffness parameters. It is known [9], that the projection matrix R related to the 
full rank matrix Q 

R = I  QT(QQT)1Q                                         (8) 
transforms any vector d0 into a vector s0 = Rd0, belonging to the kernel of the 
matrix Q, i.e., satisfying homogeneous equations (1). But this means that the 
prestress force vector s0 is obtained using d0, which can be treated as a vector 
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of arbitrary dislocation perturbations (such as bar elongations in a truss) 
causing prestress forces s0.  

By the way, besides formula (3), the following relation can be used to 
obtain R, as shown in [9] 

R = AT(AAT)-1A.                                        (9) 
Matrix R=[ ij ] with elements ij  has the following properties [10, 21]:  

a. R is idempotent, i.e. R2= R; 
b. The trace of R is equal to the degree of static indeterminacy of the 

system, i.e. trR=r; 
c. The eigenvalues of R are equal to 0 or 1, where 1=1,…, r=1, r+1=0,…, 

m=0, and the rank of R is equal to its trace, i.e. rankR=trR=r; 
d. If a diagonal element of the matrix R is equal to zero, then all elements 

of the corresponding column and corresponding row are equal to zero. 
If the diagonal element is equal to 1, and the other elements of the 

corresponding column and the corresponding row are zero, then the 
corresponding element does not affect the behavior of other elements (their 
values ijr  do not change) and the removal of this element from the system, 
reducing the degree of static indeterminacy by one, does not affect the 
geometric stability. 

The redundancy component matrix shows a geometrical property of the 
structure. Since the sum of the diagonal elements of the matrix R is equal to 
the degree of static indeterminacy, we can assume that the component ii  
indicates the degree of participation of the i-th element in the formation of the 
static indeterminacy of the system. Generally speaking, the smaller the value 
of component ii , the more important is the corresponding element in terms of 
ensuring stability. If the value equals 0, the corresponding element is essential. 
On the contrary, if its value is equal to 1, the corresponding element does not 
affect the behavior of other elements and its removal from the system reduces 
the degree of static indeterminacy by one but does not affect the stability in 
any way. 

For structural elements that are critical, i.e. the removal of which leads to 
geometric instability [14], and the creation of prestressing forces with their 
help is impossible for any perturbation d0. Indeed, by definition, such an 
element is necessarily included in the principal system of the force method 
and, therefore, the force in it cannot be considered as a component of the 
vector of unknowns х. But this means that such an element must have 
corresponding zero-column and zero-row in the matrix R (and, accordingly, in 
M). It should be noted that it suffices to check whether the diagonal element of 
the projection matrix is equal to zero (see property “d”).  

The reverse statement is true as well — a conditionally critical element 
(unlike a critical element, a conditionally critical element can be removed from 
the system without losing its geometric stability) has corresponding rows and 
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columns with non-zero elements in the projection matrix, while the main 
diagonal has a nonzero element. 

Thus, the values of the projection matrix components are quantitative 
estimates that demonstrate how and through which elements the static 
indeterminacy is embedded in the system. 

Unlike the complexity estimate [6, 5], which is related to the sequential 
analysis of possible load transfer paths through all possible principal systems 
of the force method, the projection matrix, which applies to all possible 
principal systems simultaneously, gives such an estimate immediately. 

The elements ii of the main diagonal of the matrix R show the importance 
of individual elements, and the non-diagonal elements evaluate the interaction 
between these elements. In this case, it is useful to normalize ii , and, given 
that they add up to r, it is reasonable to compare them using the values 

( )i iiс r  , the sum of which is equal to one.  
If we talk about assessing the robustness of the structure as a whole, then 

we can take the minimum value as a cautious measure of robustness: 
 minR ii

i
с  .                                            (10) 

Then the presence of critical elements indicates zero robustness of the 
system, which can be destroyed by removing such an element. 

An alternative approach is possible, based on the hypothesis that in terms of 
robustness a system, where all elements are equally important and provide 
robustness to the same extent, will be the best. Since the trace of the matrix for 
a system of m bars is equal to the degree of static indeterminacy r, then such a 
situation will take place if all diagonal elements iiс  of the matrix R 
(importance indicators) have the value 1/m. Then, we can take the measure of 
the system robustness as the root-mean-square spread of its values: 

    2
1

1 1 .
m

R ii
i

С m с m


                                     (11) 

 
 

                                          (a)                                                                  (b) 
Fig. 3 
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As an example, consider a three times statically indeterminate system with 
unit stiffness properties shown in Fig. 3(a). The principal system, which was 
used to assemble the matrix of equilibrium equations A, is shown in Fig. 3(b): 

1,000 0,000 0,001 0,706 1,413 0,706 1,580 0,001 0,000
0,000 1,000 0,706 0,001 0,706 1, 413 0,001 1,580 0,000 .
0,000 0,000 2,119 2,119 2,119 2,119 1,579 1,579 0,999

  
    
     

A  

Construct the projector R using the formula (4). We have 

  1
6,490 1,990 8, 477 0,313 0,091 0,143
1,990 6,490 8, 477 0,091 0,313 0,143
8, 477 8, 477 23,945 0,143 0,143 0

.
43

,
,1


   
       
 




    

T TAA AA  

As a result we get: 
0,313 0,091 0, 239 0,082 0, 203 0,046 0, 269 0, 083 0,143
0, 091 0,313 0,082 0, 239 0,046 0, 203 0, 083 0, 269 0,143
0, 239 0, 082 0,371 0, 260 0,033 0,144 0,058 0,190 0, 202
0, 082 0, 239 0, 260 0,371 0,144 0,033 0,190 0,058 0, 202
0, 20

  
  

   
   

R 3 0, 046 0,033 0,144 0,320 0, 209 0,321 0, 073 0,000
0, 046 0, 203 0,144 0,033 0, 209 0,320 0, 073 0,321 0,000
0, 269 0, 083 0, 058 0,190 0,321 0,073 0, 425 0,131 0,000
0, 083 0, 269 0,190 0, 058 0,073 0,321 0,131 0, 425 0,000
0,143 0,143

 
 

    
    

0, 202 0, 202 0,000 0,000 0, 000 0, 000 0,143

.

 

 
 
 
 
 
 
 
 
 
 
 
  

 

Having performed the control calculation of the trace of the matrix R, we 
obtain trR = 3,000, which coincides with the degree of static indeterminacy of 
the system. The system robustness estimates turned out to be R= 0,145 and 
R=0,236. The deviation of R from the ideal value r/m=0,333 was 30%. 

The fact that the kinematic properties of the system can be analyzed with 
the help of the projector R can help to solve the issue of changing the static-
kinematic class of the structure when removing an element of the system. If 
the k-th element is removed from the system, then the k-th component of the 
vector s0 must be equal to zero under any actions (including arbitrary 
dislocations d0), since there is no force in the missing element. To achieve this, 
it is necessary to exclude the variable 0,ks  from the system s0 = Rd0, by taking 
the Jordan elimination step [15] with the resolving element Rkk, after which the 
system s0 = Rd0 takes the following form 

1
0 0 0 0

1 1
ρ ρ ρ

k m* * *
,i ij , j ik ,k ij , j

j j k
s d s d



  
        (i = 1, … , k1), 

1
0 0 0 0

1 1
ρ ρ ρ

k m* * *
,k kj , j kk ,k kj , j

j j k
d d s d



  
    , 

1
0 0 0 0

1 1
ρ ρ ρ

k m* * *
,i ij , j ik ,k ij , j

j j k
s d s d



  
      (i =  k+1, … , m),          (12) 
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where elements of the transformed matrix are marked with an asterisk. The 
condition 0,ks = 0 allows us to remove the k-th column, and the k-th row will 
contain an expression for determining the mutual approach of nodes connected 
by the removed element, and hence the k-th row can be removed as well. 

The new matrix R* of order (m1) is also a projector, but for the structure 
with the k-th element removed. If now R* contains new zero rows and 
columns, it means that the corresponding elements have now become critical 
after the removal of the k-th element (and because of this removal)! 

The Jordan elimination step with the resolving element rks transforms the 
matrix elements R that do not belong to the resolving row or to the resolving 
column according to the formula 

 *ρ ρ ρ ρ / ρ ,ij ij is kj ks i k j r    .                         (13) 

If we take the value rkk as a resolving element, then the new values ijr  show 
how the role of the corresponding elements has changed after the removal of the 
k-th bar from the system. The Jordan elimination step with the resolving element 
r99 (the 9-th bar is removed) gives a new projector for the system in Fig. 3: 

0,17 0, 052 0, 037 0,12 0,203 0,046 0, 269 0,083
0, 052 0,17 0,12 0, 037 0,046 0,203 0,083 0, 269
0,037 0,12 0,086 0, 025 0,033 0,144 0, 058 0,19

0,12 0,037 0,025 0,086 0,144 0,033 0,19 0,058
0, 203 0, 046 0, 033 0,144 0,32 0, 209 0,3

  
  
  

  


*R
21 0,073

0, 046 0, 203 0,144 0,033 0, 209 0,32 0,073 0,321
0, 269 0, 083 0,058 0,19 0,321 0,073 0, 425 0,131
0,083 0, 269 0,19 0,058 0,073 0,321 0,131 0,425


 

    
    

 
 
 
 
 
 
 
 
 
 
  

, 

which shows how much the role of the 1st and 2nd bars has grown in the 
changed system. The calculation shows that trR*=2,002. 

The most interesting is the case when new critical elements can appear in a 
system that has changed due to the removal of the bar, as evidenced by the 
condition 

ρ ρ ρ ρss kk rs sk .                                           (12) 
New critical elements indicate the lack of robustness of the analyzed system 

(their removal leads to a general collapse).  
In conclusion, it should be noted that the possibility of using projectors and 

their transformations by Jordan elimination steps in the robustness analysis 
was pointed out in [25]. 

5. The Case of Partial Damage (Weakening) of Bars 
Local failure, initiating further failure propagation through the elements of 

the system, does not necessarily have to be a complete collapse of the element 
of the system. In our case, we will assume that the initiating event is the 
damage to the bar, which reduces its cross-sectional area Аi by a value with a 
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degree estimated by the factor   1, and the initial value of the area is 
transformed into Аi. 

To assess the effect of partial failure (weakening) of the bars, it is more 
convenient to use the projector М, which, as can be seen from (4), uses a 
diagonal matrix F with elements equal to the stiffness of the bars ii i iF l EA . 
Like the projector R, the trace of the projector М is equal to the rank of the 
matrix of equilibrium equations Q [16]. 

trM=-r.                                             (13) 
Projector М for the system in Fig. 3: 

0,382 0,053 0,058 0,101 0,098 0,054 0,111 0,009 0, 062
0,053 0,312 0, 024 0,113 0,024 0,113 0,052 0,160 0,027
0,058 0, 024 0, 266 0,151 0,054 0,028 0,108 0, 087 0,112
0,101 0,113 0,151 0,334 0,004 0, 011 0,014 0,020 0, 094
0

  
    

   
   

М , 098 0, 024 0, 054 0,004 0,340 0,102 0,172 0,035 0,011
0,054 0,113 0,028 0,011 0,102 0,359 0,050 0,142 0, 029
0,111 0, 052 0,108 0,014 0,172 0,050 0, 268 0, 057 0, 006
0,009 0,160 0,087 0,020 0,035 0,142 0, 057 0,304 0,038
0,062 0,

   
    

  


 027 0,112 0,094 0,011 0,029 0,006 0,038 0, 435

.

  

 
 
 
 
 
 
 
 
 
 
 
  

 

The weakening of the cross-section of the k-th bar, for example, changes the 
values of its stiffness, which becomes equal to kk k kF l EA  . Naturally, this 
affects the magnitude of the main diagonal elements Мii of the projector М, 
which, as in the case of the projector R, indicate the degree of participation of 
the i-th element in the formation of the static indeterminacy of the system. The 
role of the damaged bar decreases. In case of the complete collapse of the k–th 
bar (=), the k–th column and the k–th row are zeroed in the projector М. 

Since the condition (11) must be satisfied, the role of the remaining 
undamaged elements increases, they take on the role of an alternative way of 
transferring the part of the load that the damaged element cannot take. The extent 
to which this role is transferred to undamaged elements can be seen from the 
value of the increase in the corresponding elements of М. For the example 
considered earlier, the value of М for the case =0,5 will be as follows: 

0,389 0,050 0,045 0,091 0,096 0, 051 0,112 0,005 0,078
0, 050 0,313 0,019 0,109 0,025 0,115 0,052 0,162 0,034
0,045 0,019 0, 288 0,133 0,056 0,022 0,107 0,080 0,140
0, 091 0,109 0,133 0,350 0,002 0,015 0, 015 0,026 0,117
0

  
    

   
   

М , 096 0,025 0,056 0,002 0,340 0,102 0,172 0,034 0,014
0, 051 0,115 0,022 0,015 0,102 0,360 0,050 0,140 0, 037
0,112 0,052 0,107 0,015 0,172 0, 050 0, 268 0,057 0, 007
0,005 0,162 0,080 0,026 0,034 0,140 0,057 0,306 0, 047
0,078 0,

   
    

  


 034 0,140 0,117 0,014 0,037 0,007 0,047 0,385

.

  

 
 
 
 
 
 
 
 
 
 
 
  
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Fig. 4 
 

Fig. 4 shows the graphs of elements of the main diagonal М versus the 
value of the parameter , indicating the degree of damage to the 9th bar. It can 
be seen that the role of the alternative path is mainly played by the forces in 
bars 3 and 4.  

If we consider the parameter  as a measure of accumulated damage, then 
from Fig. 4 it can be seen that at small  the system is characterized by low 
sensitivity to the failure of element 9 and such a weakening effect can be 
neglected. And only with a further increase in the degree of damage (0,5) 
the system begins to react intensively to the damage.  

Sensitivity of internal forces in a system with the stress state characterized 
by the vector of internal forces 

T0 0 0
1 2 mS S S   s  ,                                       (14) 

is calculated by the formula [16]  
0

0

1 1

m m
kr

rk k rk
k kk k

SS
A A 


    

   ,                               (15) 

where rk  are elements of the projection matrix М. 
The change in the stress state of the bars caused by the weakening of the 

damaged element nonlinearly depends on the degree of damage . This is 
evidenced by the graphs in Fig. 5, describing the change in the forces in the 
bars according to Fig. 3 depending on the degree of damage of the 9th bar.  

It is known [26, 27], that the relationship between forces and the parameter 
 has a hyperbolic character and can be represented by the following 
expression: 
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i
BS A

C
 

 
. 

Three parameters А, В and С can be calculated for three force values 
obtained at different values of , which then makes it possible to reject the 
numerical solution of the problem. 
 

 

Fig. 5 
 
And with relatively small changes in the cross-sectional area of the k-th bar, 

the forces in the truss bars will change by 

   0 0

1 1
1 1, 2,...,

m m
r k rk k k rk

k k
S A S r m

 
           .         (16) 

Linear prediction (16) is approximate, apparently, its use is justified for 
values of  not exceeding 0,5. 

6. Conclusion 
Representation of the static-kinematic properties of hinged-bar systems with 

the help of projection matrices of the system of equilibrium equations makes it 
possible to analyze the degree of participation of individual bars in the 
formation of static indeterminacy and geometric stability of the structure. 

In addition, the matrix also indicates the rule for the redistribution of the 
action components in case of failure or weakening of the bar. The advantage of 
the considered approach, which distinguishes it from most other proposed 
methods for assessing robustness, is its invariance with respect to the load on 
the system. The latter is very important in the case of assessing robustness of 
structures under unidentifiable accidental actions. 

Truss structures with a single-component vector of internal forces were 
analyzed as the simplest ones in terms of computation, but the principles of the 
approach to assessing the role of individual elements of the system using a 
projection matrix have a wider scope. 
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Перельмутер А. В.  
ДО ОЦІНКИ ЖИВУЧОСТІ ШАРНІРНО-СТРИЖНЕВИХ СИСТЕМ  

Як правило, проектування конструкцій враховує передбачувані навантаження і для 
таких варіантів роботи підбираються розміри поперечних перерізів. Однак конструкції 
можуть зазнавати і непередбачених подій, таких як інтенсивні явища навколишнього 
середовища, аварії, зловмисні дії, а також помилки планування або виконання. Ця 
обставина визначає інтерес до проблеми живучості конструкцій, якій останнім часом 
присвячується багато робіт. 

Ця стаття присвячена методам оцінки живучості шарнірно-стрижневих систем. Об'єктом 
дослідження обрані фермові конструкції, найпростіші у обчислювальному відношенні, але 
що дають можливість повністю проілюструвати пропонований підхід. 

Спочатку аналізуються відмінності прогресуючого обвалення (опис процесу) від 
непропорційного розвитку локальних руйнувань (опис стану). Вказується на 
узагальнюючий характер поняття живучості та її від поняття невразливості. 

Розглядається проблема виміру живучості. Аналізуються відомі кількісні оцінки 
живучості, основна увага при цьому спрямована на оцінки, інваріантні по відношенню до 
напруженого стану як більш загальні. Розглядаються оцінки, що використовують такі 
властивості матриці жорсткості як число обумовленості, або засновані на зіставленні 
детермінантів початкової матриці жорсткості, що змінилася. Вказується те що, що ступінь 
статичної невизначеності може лише необхідним, але недостатнім вимірником живучості. 

Відзначається відомий варіант оцінки живучості за допомогою матриці надмірностей, 
що визначається зусиллями, які необхідно докласти для складання системи з елементів, що 
мають довжину, відмінну від проектної. Цьому варіанту протиставляється використання 
матриці-проектора, елементи головної діагоналі якої вказують на ступінь стрижнів у 
забезпеченні живучості. Розглянуто основні властивості проектора, обумовлені тим, що він 
є матрицею нильпотентною. Показана можливість перерахунку початкової матриці-
проектора до проектора системи, що змінилася, за допомогою кроку жорданових 
виключень. На найпростішому прикладі демонструються формування та зміни матриці-
проектора. 

Крім руйнування стрижня розглядається і випадок його ушкодження (часткового 
руйнування), показано як це позначається зміні проектора і перерозподіл внутрішніх 
зусиль. 

Ключові слова: живучість, прогресуюче руйнування, межа живучості, проективна 
матриця, фактори участі. 

 
 
Perelmuter A. V.  
ASSESSMENT OF ROBUSTNESS OF HINGED-BAR SYSTEMS   

Typically in structural design, foreseeable loads are assumed in a dimensioning exercise. 
Structures can, however, be exposed to largely unforeseeable events such as intense environmental 
phenomena, accidents, malicious acts, and planning or execution errors. This circumstance 
determines the interest in the problem of structural robustness, which has been the subject of many 
recent works. 
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This paper focuses on methods for assessing the robustness of hinged bar systems, considering 
truss structures as an example. They are the simplest in terms of computation, but make it possible 
to fully illustrate the proposed approach. 

First, the differences between progressive collapse (description of the process) and the 
disproportionate propagation of local failures (description of the state) are analyzed. The 
generalizing nature of the concept of robustness and its differences from the concept of 
invulnerability are pointed out. 

The paper considers the problem of measuring robustness. The known quantitative estimates of 
robustness are analyzed focusing on estimates that are invariant with respect to the stress state, as 
more general ones. The paper considers estimates that use such properties of the stiffness matrix as 
the condition number, or based on a comparison of the determinants of the original and changed 
stiffness matrices. It is pointed out that the degree of static indeterminacy can serve only as a 
necessary, but insufficient measure of robustness.  

The paper considers a well-known method of robustness assessment using a redundancy matrix 
determined by the forces that must be applied to assemble the system from elements with the 
length different from the design one. This method is opposed to the use of a projection matrix, the 
main diagonal elements of which indicate the degree of participation of the bars in ensuring 
robustness. The main properties of the idempotent projection matrix are considered. The paper 
illustrates the possibility of recalculating the projection matrix for the changed system with the 
help of the Jordan elimination step. A simple example demonstrates assembling and changing the 
projection matrix. 

In addition to the failure of the bar, the case of its damage (partial failure) is also considered, it 
is shown how it affects the change in the projector and the redistribution of internal forces. 

Keywords: Robustness, Progressive collapse, Robustness measure, Design matrix, 
Participation factors. 
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