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Abstract

This paper focuses on methods for assessing the robustness of hinged bar systems, considering
truss structures as an example. They are the simplest in terms of computation, but make it possible
to fully illustrate the proposed approach.

The paper considers a well-known method of robustness assessment using a redundancy matrix
determined by the forces that must be applied to assemble the system from elements with the
length different from the design one. This method is opposed to the use of a projection matrix, the
main diagonal elements of which indicate the degree of participation of the bars in ensuring
robustness. The main properties of the idempotent projection matrix are considered. The paper
illustrates the possibility of recalculating the projection matrix for the changed system with the
help of the Jordan elimination step. A simple example demonstrates assembling and changing the
projection matrix.

In addition to the failure of the bar, the case of its damage (partial failure) is also considered, it
is shown how it affects the change in the projector and the redistribution of internal forces.

Keywords: Robustness, Progressive collapse, Robustness measure, Design matrix,
Participation factors.

1. Introduction

Studying the response of a structure to possible catastrophic events and
checking its robustness has now become an almost mandatory part of the
design process. This made the engineers question some of the main ideas of
the traditional approach to analysis, in particular, the orientation towards
assessing the behavior of a structure under given actions, using the statistical
properties of loads and materials to determine the failure probability, etc.

Catastrophic events that entail severe consequences are extremely rare and
there is not enough statistical data for them. Therefore, the main approach is to
shift attention from external actions to possible damage to the building
structure. The relative novelty of this approach has created a certain confusion
of such basic concepts as “progressive collapse”, “disproportionate collapse”
and “robustness”. The phenomena they describe are very close, but do not
coincide, and the mentioned concepts are not synonymous. Therefore, it is
useful to consider their similarities and differences.

In this paper, the robustness of the system is considered as the main
characteristic of the behavior of the system with initial damage. Quantitative
assessment of robustness should be based on a comparison of the size and
extent of the initial damage or the corresponding consequences [22, 8].
Various measures of robustness assessment have been proposed, based on
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some characteristic features that distinguish structural behavior in case of
damage. Starossec U. and Haberland M. [17] introduced an energy-based
metric based on the evaluation of the renewable energy required for damage
propagation. In parallel, they suggested a stiffness-based measure that
accounts for the ratio between the determinant of the stiffness matrix of the
structure deprived of the damaged element (or connection) and the
determinant of stiffness matrix of the undamaged structure. Baker et al. [2]
proposed to measure the fraction of total system risk resulting from
component failure. Biondini et al. [3] compared the effectiveness of various
structural performance indicators and found that the ratios between either
displacements or stored energies in the undamaged and damaged
configurations are suitable for damage-tolerance analysis.

All of the above proposals were related to the assessment of the measure of
system robustness and only to a small extent evaluated the contribution of
elements, and this contribution was sequentially calculated for the elements of
the systems and did not make it possible to simultaneously rank and compare
the contributions of all elements.

An effective assessment of the role of elements in providing robustness is
important at the conceptual design stage, especially for structures characterized
by a high degree of static indeterminacy. And since the failure of an element is
not necessarily related to an accidental action, and can be caused by human
errors or poor workmanship, ranking allows you to indicate the places where
you need to pay greater attention to the quality of work and justify the
appropriate control procedures. And, finally, ranking helps to build a strategy
for protection against accidental actions.

This is possible with the method for estimating contributions considered in
this paper, which is based on using a projection matrix invariant with respect
to the loading of the system and the stiffness properties of its elements.

2. Robustness and Progressive Collapse — Similarities and Differences

The very term “progressive collapse” is not very accurate, because it
describes not the result, but rather the characteristic of the process, the nature
of the collapse, which does not necessarily have the form of an avalanche-like
expansion of the damage area up to a complete loss of system connectivity.
But the term “disproportionate collapse” is more accurate, since it directly
refers to the disproportionate scale of destruction compared to the primary
structural damage, or in other words, to the discrepancy between the scale of
accidental actions and their consequences.

Generally speaking, not every disproportionate collapse is progressive, and
not every progressive collapse is disproportionate. That is, disproportionate
collapse can occur with the sequential failure of elements one after another, in
which case it will be progressive, or with an instant collapse of the entire
structure. On the other hand, a large-scale progressive collapse may or may not
become disproportionately large depending on whether the chain of failures
stopped before a complete collapse.

The collapse of the World Trade Center towers in New York, which is often
cited as an example, cannot reasonably be called disproportionate, since the
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initial impact was very large. In other words, disproportionate collapse
describes the consequences of a local damage, while progressive collapse
describes the mechanism of failure propagation. In addition, disproportionate
collapse should not be confused with a general collapse due to a strong
earthquake, wind, hurricane, etc. when a whole series of simultaneous failures
is possible (Fig. 1).
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Progressive (disproportionate) collapse stability analysis is usually
identified with the robustness analysis [23, 9, 12]. This is how the situation is
described, for example, in ISO 2394:2015, which provides the following
definition: “Structural integrity (structural robustness): Ability of a structure
not to be damaged by events like fire, explosions, impact or consequences of
human errors, to an extent disproportionate to the original cause”.

But the very concept of robustness can have a broader meaning; it makes it
possible to describe the properties of damaged structures more adequately.
From the general technical view robustness is defined as “the property of a
structure to maintain limited operability under external actions leading to
failures of its component parts”.

Considered in this way, robustness takes into account not only the
possibility of progressive collapse, but also all other possible losses of the
system functionality in case of failure of individual elements. For example, for
structures whose functional purpose is to provide strength, the safety factor
value can serve as a functional characteristic, for oscillatory systems — the
natural frequencies of free vibrations, for precision objects — shape accuracy
and stability.

The definition of robustness as the ability of a structure to perform its main
functions, despite the damage received, seems more reasonable, since in many
cases, the loss of functionality may not be due to the failure propagation, as
evidenced by numerous examples. Thus, just the failure of one span of a multi-
span bridge crossing can lead to the complete loss of its functionality, and just
one wire break is enough to stop electric power transmission. Functioning of
both of these systems depends on their connectivity. The same applies to the
need to preserve continuity — it is necessary to assess the possibility of the tank
operation, where a hole in the wall or bottom can lead to its complete
inoperability.
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Progressive (disproportionate) collapse is characterized by the following
features:

- abnormal event causing accidental (identifiable and/or unidentifiable)
actions;

- local failure of an individual structural member, causing the collapse of a
part of the structural system;

- disproportionately large scale of negative consequences compared to the
local failure that caused them.

Fig. 2 gives a good idea of the essence of the phenomenon. It shows a well-
known formula for the probability of collapse P[Collapse] as a product of
probabilities, where P[H] is the probability of occurrence of hazard H; P[D|H]
is the conditional probability of a local failure given the occurrence of hazard
H; P[Collapse|D] is the conditional probability of occurrence of a collapse
given the occurrence of the local failure D.

Robustness Failure injtialization
N

Element Environment

P[Collapse]= P[Collapse |D] x P[D|H]x P[H]

— N
Vulnerability Hazard
Fig. 2

Notes to the probabilistic formula clarify the role of the system, its element
and the environment, and also indicate the relationship between the basic
concepts and the individual elements of this formula. And it should be noted
right away that, as shown in the figure, invulnerability is not synonymous with
robustness. Vulnerability can characterize both an element and a system, and
robustness is a quality inherent only in the load-bearing system as a whole
[18]. The vulnerability of a structure may vary depending on various hazards,
i.e. the structure may be vulnerable to vehicle impacts, but not to seismic
loads, while robustness will be the same for both hazards.

Literature related to the problem of robustness often uses the concept of
redundancy of a design model, which is defined as the ability to redistribute
loads between its elements, creating an alternative load transfer path or using
other methods of protection. Their redundancy is primarily related to static
indeterminacy, but it can also be determined by additional safety margins
(design of key elements), plastic structural behavior providing the ability to
absorb energy, or special protection elements.

It is important to clarify the goals when we say that we want to protect the
structure from progressive collapse. It is often implied (usually implicitly) that
our goal is to eliminate the possibility of progressive collapse. However, there
are also other reasonable goals that can be and sometimes even have to be
achieved.

One of such goals can be for example the limitation of the scale of local
damage. A protection strategy using partitioning is possible here, and typical
examples are easily dropped partitions used for protection against explosions,
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when by limiting the scale of destruction only to the mentioned partitions, we
interrupt the chain of failures. Firewalls or fire breaks in a fire protection
system can also be mentioned as an example here.

Another goal is the limitation of the rate of development of the progressive
collapse process. In fact, this is exactly what we are talking about when the fire
resistance requirements (time to failure) are set taking into account the
possibility of evacuating people from the fire zone (well, the building may
collapse afterwards, although it is not desirable).

Finally, destruction can be limited by the possibility of subsequent repair of
damaged structures. In fact, the whole theory of seismic protection is based on
this idea.

3. Robustness Measure

According to the review [10] dozens of quantitative indicators of structural
robustness are known. They can be classified into dependent on the stress state
that preceded the failure of the element, and invariant with respect to the
system load [1]. The former include all measures based on risk assessment,
strength analysis, etc., the latter are based on the analysis of topological and
stiffness characteristics, and in this sense are more general.

The analysis of the system properties invariant with respect to the stress
state puts the focus on the structural analysis, the assessment of the role of
individual parts of the structure and the ways of their interaction. It is related to
the robustness study of systems whose local damage may occur due to
unidentifiable accidental actions. In fact, the classical analysis of static
geometric properties of bar systems designed for stable structures is developed
here for the case of systems whose topology can change due to the failure of
individual elements.

In this paper, we will consider only the analysis of hinged-bar systems,
which will allow us to focus on the fundamental issues of the methodology.

The robustness of a bar system is directly related to static indeterminacy,
and the degree of static indeterminacy is sometimes considered a measure of
robustness. Despite the fact that the degree of static indeterminacy intuitively
seems to be an ideal indicator of system safety [13], this metric provides only a
necessary but not sufficient condition for robustness. A high degree of static
indeterminacy does not mean a more robust structure (let’s just take critical
elements of the structure, for example, the removal of which leads to
geometric instability).

In his works De Biagi [6, 5] related the robustness measure to the
“complexity” of the system which is a metric based on the performance of the
load paths through the structural scheme under an arbitrary loading and is
estimated by the number of fundamental subsystems (geometrically stable
main systems of the force method) that can be obtained for a given structure.
As the degree of static indeterminacy increases, the number of fundamental
subsystems increases at a faster rate, which requires special computational
approaches.
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The assembly of the system stiffness matrix involves both the topological
and metric parameters of the system, therefore, its analysis was taken by many
as the basis for developing the robustness measure.

It was proposed to use the condition number A(K)>1 of the stiffness matrix
in [14, 15]. Since the condition number serves as a measure of the matrix
proximity to degeneracy, and we want the stiffness matrix to be “far” from the
set of irreversible degenerate matrices, an inverse value is used

-1 _
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where || is the Euclidean matrix norm. 3 is in the range from 0 to 1, with a

higher value indicating a more robust system.

A measure of importance is proposed to represent the contribution of a
structural member to the robustness of the system. It was defined as a ratio of
the determinant of normalized stiffness matrices of the undamaged structure K
and that of the damaged structure K;

detK
"odetK; @

This indicator varies from 1 to infinity, and the higher its value, the more
critical the i-th element is for the robustness of the system. Starossec and
Haberland [19, 20] proposed a similar measure to assess the system as a whole

. detK
Rs mjl'n detK; ’ ®)
comparing the stiffness matrix of the undamaged structure and the structure
damaged after the removal of j-th element.

The robustness of the system, its ability to function (perhaps with some loss
of quality) without any failed element, indicates that it has a certain
“redundancy”, i.e. it has some safety margins that ensure the existence of
alternative load transfer paths, and are based on its static indeterminacy.

The assessment using a redundancy measure, proposed in [11], is
quantitative. In this case, it becomes possible to assess the contribution of
individual elements to ensuring robustness. The distribution of these
contributions significantly depends on the geometric and topological properties
of the structural complex. Depending on the geometric and topological
relationships between the components of the system, material and cross-
section, each element has its own effect on robustness. It is worth knowing
where there is redundancy in the system and where damage is unacceptable
due to the lack of alternative load paths.

The authors of [11] propose to perform the measurement of redundancy on
the basis of the problem of assembling a truss system from elements with
inaccurate length values. To resolve geometric discrepancies, it is necessary to
adjust the geometric length of the elements and/or their connections, and
therefore we need to apply some forces. It is assumed that these forces are
closely related to the distribution of redundancy components in the structure
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and can serve as an estimate of the role of elements in ensuring robustness.
The sum of individual redundancy values of the elements, measured by a
number from 0 to 1, is equal to the degree of static indeterminacy.

It should be noted that the redundancy matrix presented in [11] is, in fact,
one of the variants introduced in [24] and developed in [16] of projection
matrices that reflect load-independent static-kinematic properties of a multi-
element statically indeterminate system. The use of projectors makes it
possible to abandon the hypothesis that it is the assemblability that is the
determining factor for assessing the contributions of individual elements to the
robustness of the system.

4. Static-Kinematic Analysis. Projectors

In cases when the number of internal forces and displacements m exceeds
the number of external unknowns #n, the system of equilibrium equations,
which has the following form in absence of external loads p

Qs=0, 4)

So = AX %)
with an arbitrary (m—r)-dimensional column x. Matrix A represents forces in
the principal system of the force method caused by unit values of unknowns x.

Formula (5) defines a space of self-balanced forces sy, the dimension of
which k= (m —r) is equal to the degree of static indeterminacy of the system.
Forces obtained from (5) define the self-balanced stressed state at an arbitrary
vector x. These forces are initial ones (prestresses), and they usually arise
during the erection of the structure, including the elimination of the mentioned
discrepancy between the geometry of the system and the lengths of its
elements, which form the vector of residuals A.

Forces that have to be applied to the bars for this are determined by the
matrix formula of the displacement method

s=(I-FQ'K 'Q)FA = (I1- FM)FA, (6)
where K=QFQ' is the stiffness matrix of the system, F is the matrix

relating the bar elongations A with the forces s (s=FA), and M is the projection
matrix

allows a nontrivial solution

-1
M=Q'K'Q=Q"(QFQ") @, (7
which was used in [11].

Since we are interested in the static and kinematic properties of the system,
and more precisely, only in the conditions when it loses its variability property,
it is more convenient to use another projector that does not contain the bar
stiffness parameters. It is known [9], that the projection matrix R related to the
full rank matrix Q

R=1-Q'(QQ")'Q (8)
transforms any vector d, into a vector s, = Rdy, belonging to the kernel of the
matrix Q, i.e., satisfying homogeneous equations (1). But this means that the
prestress force vector s, is obtained using dy, which can be treated as a vector
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of arbitrary dislocation perturbations (such as bar elongations in a truss)
causing prestress forces s.

By the way, besides formula (3), the following relation can be used to
obtain R, as shown in [9]

R=AT(AAT)'A. )
Matrix R=[p;; ] with elements p;; has the following properties [10, 21]:

a. Ris idempotent, i.e. R*=R;

b. The trace of R is equal to the degree of static indeterminacy of the

system, i.e. trR=r;

c. The eigenvalues of R are equal to 0 or 1, where A=1,..., A,=1, A,.,=0,...,

A»=0, and the rank of R is equal to its trace, i.e. rankR=trR=r;

d. If a diagonal element of the matrix R is equal to zero, then all elements

of the corresponding column and corresponding row are equal to zero.

If the diagonal element is equal to 1, and the other elements of the
corresponding column and the corresponding row are zero, then the
corresponding element does not affect the behavior of other elements (their
values r; do not change) and the removal of this element from the system,

reducing the degree of static indeterminacy by one, does not affect the
geometric stability.

The redundancy component matrix shows a geometrical property of the
structure. Since the sum of the diagonal elements of the matrix R is equal to
the degree of static indeterminacy, we can assume that the component p;

indicates the degree of participation of the i-th element in the formation of the
static indeterminacy of the system. Generally speaking, the smaller the value
of component p;; , the more important is the corresponding element in terms of

ensuring stability. If the value equals 0, the corresponding element is essential.
On the contrary, if its value is equal to 1, the corresponding element does not
affect the behavior of other elements and its removal from the system reduces
the degree of static indeterminacy by one but does not affect the stability in
any way.

For structural elements that are critical, i.e. the removal of which leads to
geometric instability [14], and the creation of prestressing forces with their
help is impossible for any perturbation dy. Indeed, by definition, such an
element is necessarily included in the principal system of the force method
and, therefore, the force in it cannot be considered as a component of the
vector of unknowns x. But this means that such an element must have
corresponding zero-column and zero-row in the matrix R (and, accordingly, in
M). It should be noted that it suffices to check whether the diagonal element of
the projection matrix is equal to zero (see property “d”).

The reverse statement is true as well — a conditionally critical element
(unlike a critical element, a conditionally critical element can be removed from
the system without losing its geometric stability) has corresponding rows and
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columns with non-zero elements in the projection matrix, while the main
diagonal has a nonzero element.

Thus, the values of the projection matrix components are quantitative
estimates that demonstrate how and through which eclements the static
indeterminacy is embedded in the system.

Unlike the complexity estimate [6, 5], which is related to the sequential
analysis of possible load transfer paths through all possible principal systems
of the force method, the projection matrix, which applies to all possible
principal systems simultaneously, gives such an estimate immediately.

The elements p;; of the main diagonal of the matrix R show the importance
of individual elements, and the non-diagonal elements evaluate the interaction
between these elements. In this case, it is useful to normalize p;; , and, given
that they add up to r, it is reasonable to compare them using the values
¢; =(p;;/r) , the sum of which is equal to one.

If we talk about assessing the robustness of the structure as a whole, then
we can take the minimum value as a cautious measure of robustness:

vz =min(c;). (10)

Then the presence of critical elements indicates zero robustness of the
system, which can be destroyed by removing such an element.

An alternative approach is possible, based on the hypothesis that in terms of
robustness a system, where all elements are equally important and provide
robustness to the same extent, will be the best. Since the trace of the matrix for
a system of m bars is equal to the degree of static indeterminacy r, then such a
situation will take place if all diagonal elements ¢; of the matrix R

(importance indicators) have the value 1/m. Then, we can take the measure of
the system robustness as the root-mean-square spread of its values:

€ = J(l/m&(cﬁ —(ym)?. (i

i=1

(@ (b)
Fig.3
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As an example, consider a three times statically indeterminate system with
unit stiffness properties shown in Fig. 3(a). The principal system, which was
used to assemble the matrix of equilibrium equations A, is shown in Fig. 3(b):

1,000 0,000 —0,001 0,706 1,413 0,706 —1,580 0,001 0,000
A =|0,000 1,000 0,706 —0,001 0,706 1,413 0,001 —1,580 0,000 |.

0,000 0,000 -2,119 -2,119 -2,119 2,119 1,579 1,579 0,999
Construct the projector R using the formula (4). We have

6,490 1,990 8,477 1 0,313 0,091 0,143
AAT =] 1,990 6,490 -8,477 |, (AAT) =10,0910,313 0,143 |.
8,477 8,477 23,945 0,143 0,143 0,143

As aresult we get:
[ 0,313 0,091 -0,239 —0,082 0,203 0,046 —0,269 0,083 0,143 |

0,091 0,313 -0,082 -0,239 0,046 0,203 0,083 0,269 0,143

-0,239 -0,082 0,371 0,260 0,033 0,144 0,058 —0,190 —-0,202
-0,082 -0,239 0,260 0,371 0,144 0,033 0,190 0,058 —0,202
R=| 0,203 0,046 0,033 0,144 0,320 0,209 -0,321 -0,073 0,000 |.
0,046 0,203 0,144 0,033 0,209 0,320 -0,073 -0,321 0,000
-0,269 0,083 0,058 —-0,190 —0,321 —0,073 0,425 0,131 0,000
0,083 0,269 —0,190 0,058 —0,073 —0,321 —0,131 0,425 0,000
| 0,143 0,143 -0,202 -0,202 0,000 0,000 0,000 0,000 0,143 ]

Having performed the control calculation of the trace of the matrix R, we
obtain #R = 3,000, which coincides with the degree of static indeterminacy of
the system. The system robustness estimates turned out to be vg= 0,145 and
pur=0,236. The deviation of py from the ideal value »/m=0,333 was 30%.

The fact that the kinematic properties of the system can be analyzed with
the help of the projector R can help to solve the issue of changing the static-
kinematic class of the structure when removing an element of the system. If
the k-th element is removed from the system, then the k-th component of the
vector s, must be equal to zero under any actions (including arbitrary
dislocations dy), since there is no force in the missing element. To achieve this,
it is necessary to exclude the variable s, from the system sy = Rd,, by taking

the Jordan elimination step [15] with the resolving element Ry, after which the
system sy = Rd, takes the following form

k=1, « m « )
So,i = zpijdo,j +PirSox t > pydo,; (=1,...,k=1),
j=1 Jj=k+1

k=1, « m «
dog =2 pido; +PuSox + 2. Prido >
j=1 Jj=k+1

k=1, « m « )
sO,i = z pljdo,j +piks0,k + z plde,] (l = k"l‘l, ey m), (12)
j=1 Jj=k+1
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where elements of the transformed matrix are marked with an asterisk. The
condition s, = 0 allows us to remove the k-th column, and the k-th row will

contain an expression for determining the mutual approach of nodes connected
by the removed element, and hence the k-th row can be removed as well.

The new matrix R* of order (m—1) is also a projector, but for the structure
with the k-th element removed. If now R* contains new zero rows and
columns, it means that the corresponding elements have now become critical
after the removal of the k-th element (and because of this removal)!

The Jordan elimination step with the resolving element r;, transforms the
matrix elements R that do not belong to the resolving row or to the resolving
column according to the formula

p;.:pij—pisp]g./pky (i#k, j#r). (13)

If we take the value ry as a resolving element, then the new values rl; show

how the role of the corresponding elements has changed after the removal of the
k-th bar from the system. The Jordan elimination step with the resolving element
rg9 (the 9-th bar is removed) gives a new projector for the system in Fig. 3:

0,17 0,052 0,037 0,12 0,203 0,046 —0,269 0,083
-0,052 0,17 0,12 -0,037 0,046 0,203 0,083 —0,269
-0,037 0,12 0,086 -0,025 0,033 0,144 0,058 -0,19
* 0,12 -0,037 -0,025 0,086 0,144 0,033 -0,19 0,058

0,203 0,046 0,033 0,144 0,32 0,209 0,321 -0,073

0,046 0,203 0,144 0,033 0,209 0,32 -0,073 —0,321
-0,269 0,083 0,058 -0,19 -0,321-0,073 0,425 —0,131
L 0,083 -0,269 -0,19 0,058 -0,073 0,321 -0,131 0,425 |
which shows how much the role of the 1st aEld 2nd bars has grown in the
changed system. The calculation shows that /7R =2,002.

The most interesting is the case when new critical elements can appear in a

system that has changed due to the removal of the bar, as evidenced by the
condition

PssPik = PrsPsk - (12)
New critical elements indicate the lack of robustness of the analyzed system
(their removal leads to a general collapse).
In conclusion, it should be noted that the possibility of using projectors and
their transformations by Jordan elimination steps in the robustness analysis
was pointed out in [25].

5. The Case of Partial Damage (Weakening) of Bars

Local failure, initiating further failure propagation through the elements of
the system, does not necessarily have to be a complete collapse of the element
of the system. In our case, we will assume that the initiating event is the
damage to the bar, which reduces its cross-sectional area 4; by a value with a
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degree estimated by the factor & < 1, and the initial value of the area is

transformed into &4;,

To assess the effect of partial failure (weakening) of the bars, it is more
convenient to use the projector M, which, as can be seen from (4), uses a
diagonal matrix F with elements equal to the stiffness of the bars F; =1, /E4; .
Like the projector R, the trace of the projector M is equal to the rank of the
matrix of equilibrium equations Q [16].

trM=-r. (13)

Projector M for the system in Fig. 3:

[ 0,382 0,053 0,058 0,101 —0,098 —0,054 0,111 0,009 —0,062]
0,053 0,312 -0,024 -0,113 -0,024 —-0,113 -0,052 0,160 0,027
0,058 -0,024 0,266 —0,151 -0,054 0,028 0,108 -0,087 0,112
0,101 -0,113 -0,151 0,334 0,004 —-0,011 0,014 0,020 0,094

M =|-0,098 0,024 -0,054 0,004 0,340 —0,102 0,172 0,035 —0,011].

-0,054 -0,113 0,028 —0,011 -0,102 0,359 0,050 0,142 —0,029

0,111 -0,052 0,108 —0,014 0,172 0,050 0,268 0,057 0,006

0,009 0,160 -0,087 0,020 0,035 0,142 0,057 0,304 0,038
|-0,062 0,027 0,112 0,094 -0,011 -0,029 -0,006 0,038 0,435 |

The weakening of the cross-section of the k-th bar, for example, changes the
values of its stiffness, which becomes equal to Fj;, =1/, /§E4, . Naturally, this

affects the magnitude of the main diagonal elements M;; of the projector M,

which, as in the case of the projector R, indicate the degree of participation of

the i-th element in the formation of the static indeterminacy of the system. The
role of the damaged bar decreases. In case of the complete collapse of the A—th

bar (&=x), the k—th column and the k—th row are zeroed in the projector M.

Since the condition (11) must be satisfied, the role of the remaining
undamaged elements increases, they take on the role of an alternative way of
transferring the part of the load that the damaged element cannot take. The extent
to which this role is transferred to undamaged elements can be seen from the
value of the increase in the corresponding elements of M. For the example
considered earlier, the value of M for the case £&=0,5 will be as follows:

[ 0,389 0,050 0,045 0,091 -0,096 —0,051 0,112 0,005 —0,078]
0,050 0,313 -0,019 —0,109 —0,025 —0,115 0,052 0,162 0,034
0,045 -0,019 0,288 —-0,133 -0,056 0,022 0,107 —0,080 0,140
0,091 -0,109 -0,133 0,350 0,002 —-0,015 0,015 0,026 0,117

M =|-0,096 —0,025 —0,056 0,002 0,340 —0,102 0,172 0,034 0,014 |.

-0,051 -0,115 0,022 -0,015 -0,102 0,360 0,050 0,140 —0,037
0,112 -0,052 0,107 0,015 0,172 0,050 0,268 0,057 —0,007
0,005 0,162 -0,080 0,026 0,034 0,140 0,057 0,306 0,047

|-0,078 0,034 0,140 0,117 -0,014 -0,037 -0,007 0,047 0,385 |
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Fig. 4 shows the graphs of elements of the main diagonal M versus the
value of the parameter &, indicating the degree of damage to the 9th bar. It can
be seen that the role of the alternative path is mainly played by the forces in
bars 3 and 4.

If we consider the parameter § as a measure of accumulated damage, then
from Fig. 4 it can be seen that at small & the system is characterized by low
sensitivity to the failure of element 9 and such a weakening effect can be
neglected. And only with a further increase in the degree of damage (£>0,5)
the system begins to react intensively to the damage.

Sensitivity of internal forces in a system with the stress state characterized
by the vector of internal forces

T
s=[s sy sn] (14)
is calculated by the formula [16]

as, » S mo,
L= —=>0 , 15
aAk ; Mok Ak kz::l KMok ( )

where ., are elements of the projection matrix M.

The change in the stress state of the bars caused by the weakening of the
damaged element nonlinearly depends on the degree of damage & This is
evidenced by the graphs in Fig. 5, describing the change in the forces in the
bars according to Fig. 3 depending on the degree of damage of the 9th bar.

It is known [26, 27], that the relationship between forces and the parameter
& has a hyperbolic character and can be represented by the following
expression:
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S =d+-B_.
C+§

Three parameters A4, B and C can be calculated for three force values

obtained at different values of & which then makes it possible to reject the
numerical solution of the problem.

1,5

A 1,0

N\

]
\[J
/

1 0.8 0,6 0,4 0.2 0
Degree of damage &

Fig. 5

And with relatively small changes in the cross-sectional area of the k-th bar,
the forces in the truss bars will change by

m m
AS, =Y oW Ad =(1-8)Y. SPu,,  (r=1,2,..,m).  (16)
k=1 k=l
Linear prediction (16) is approximate, apparently, its use is justified for
values of & not exceeding 0,5.

6. Conclusion

Representation of the static-kinematic properties of hinged-bar systems with
the help of projection matrices of the system of equilibrium equations makes it
possible to analyze the degree of participation of individual bars in the
formation of static indeterminacy and geometric stability of the structure.

In addition, the matrix also indicates the rule for the redistribution of the
action components in case of failure or weakening of the bar. The advantage of
the considered approach, which distinguishes it from most other proposed
methods for assessing robustness, is its invariance with respect to the load on
the system. The latter is very important in the case of assessing robustness of
structures under unidentifiable accidental actions.

Truss structures with a single-component vector of internal forces were
analyzed as the simplest ones in terms of computation, but the principles of the
approach to assessing the role of individual elements of the system using a
projection matrix have a wider scope.
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Ilepenvmymep A. B.
0 OUIHKH )KUBYYOCTI HAPHIPHO-CTPU)KHEBUX CUCTEM

SIk TmpaBHIIO, MPOEKTYBaHHS KOHCTPYKLIHl BpaxoBye mepenbadyBaHi HaBaHTaKCHHS 1 UL
TaKHX BapiaHTiB POOOTH MMiIOMPAIOTHCS PO3MIpH HONMEpedHHX mepepidiB. OmHAK KOHCTPYKLIT
MOXXYTh 3a3HaBaTH 1 HemepeAOauyeHHWX MOJiM, TaKMX SK IHTCHCHBHI SBHUINA HABKOJHUIIHBOTO
cepeloBHILA, aBapii, 3JOBMHCHI [il, a TaKOoX I[OMWIKHA IUIAaHYBaHHsA a00 BHKOHaHHs. Lls
oOcTaBHHA BH3HA4Ya€ iHTEpeC MO MPOOJIEMH JKHUBYYOCTI KOHCTPYKLH, SIKii OCTaHHIM dYacoMm
IPUCBSYYETHCS 6arato pooiT.

Llst cTaTTs NpUCBSYCHA METOAAM OLIHKU JKMBYYOCTI [IAPHIPHO-CTPIKHEBHX cHcTeM. O0'eKTOM
JIOCIIKeHHsT 00paHi (epMOBi KOHCTPYKIIii, HANMIPOCTILi Yy 00YHMCIIIOBAILHOMY BiJIHOLICHHI, aje
1[0 JAI0Th MOXKJIMBICTH IIOBHICTIO MPOLTIOCTPYBATH [IPOIIOHOBAHMI MiXiz.

Croyatky aHami3ylThCsl BIAMIHHOCTI MPOrpecyrodoro oOBajeHHs (OMHC IpoLecy) Bifx
HEMpONOPLIHHOrO  PO3BUTKY JIOK&JbHHX pyiiHyBaHb (omuc craHy). Bkasyerbcs Ha
y3araJbHIOIOYHIT XapaKTep MOHSTTS )KHUBYYOCTI Ta i BiJf MOHSATTS HEBPa3IUBOCTI.

Posrisiaereest mpoGsieMa BHMIPY JKMBYYOCTi. AHATNI3YHOTHCS BiOMi KUIbKIiCHI OLiHKH
JKHBYYOCTi, OCHOBHA yBara IpH LIbOMY CIPSIMOBaHA Ha OLHKH, iHBapiaHTHI [0 BiZHOIICHHIO 10O
HaNpy>XCeHOro CTaHy sIK OilbIl 3araibHi. PO3rJsmarOThCs OLHKH, IO BHUKOPHUCTOBYHOTH TaKi
BJIACTUBOCTI MATPHILIi KOPCTKOCTI SK YKCIO OOYMOBJICHOCTI, ab0 3aCHOBaHi Ha 3iCTaBJCHHI
JIETEPMIHAHTIB I0YaTKOBOT MAaTPHIi )KOPCTKOCTI, 1110 3MiHMNAC. BkasyeTscs Te 110, MO CTYIiHb
CTaTUYHOI HEBM3HAYECHOCTI MOJKe JIMIIEC HEOOXIAHUM, ajie HeJOCTATHIM BUMIPHHKOM XKHUBYYOCTI.

Bin3HavyaeTbesl BiOMHMIl BapiaHT OL[HKH JKHBYYOCTI 3a JOHNOMOIOI0 MATPHIL{ HaAMIpHOCTEH,
1[0 BU3HAYAETHCS 3yCHIUIAMH, SIKI HEOOXIIHO JOKIACTH Ui CKJIAJAHHI CHCTEMH 3 CJIEMEHTIB, 1[0
MaloTh JOBXKHHY, BIAMIHHY Bif HpOeKTHOI. L[boMy BapiaHTy NPOTHCTABIISETHCS BHKOPHCTAHHS
MAaTPHULI-IPOEKTOPA, EIEMEHTH TOJIOBHOI [iaroHayi sKOI BKa3ylOTh HA CTYNiHb CTPHXKHIB Y
3a0e3neyeHHi XKUBYYOCTi. PO3IIISIHYTO OCHOBHI BJIaCTHBOCTI IPOEKTOPA, 00YMOBIICHI THM, L0 BiH
€ MaTpHLECI0 HHJIBIOTCHTHOIO. [loka3aHa MOXUIMBICTh IEpepaxyHKy II04aTKOBOI MaTpHIi-
IPOEKTOpa [0 MPOEKTOpa CHUCTEMH, LI0 3MIHWIAcs, 3a JOINOMOIOK KPOKY JKOPIAHOBHX
BHKIIOYeHb. Ha HafimpocTimoMy NpHKiIaai IeMOHCTPYIOTHCS (OpMYyBaHHS Ta 3MIHH MAaTpHIIi-
IPOEKTOPA.

KpimM pyiHYBaHHS CTPIDKHS PO3IISAETHCSA 1 BHNAZOK HOr0 YHIKODKEHHS (YaCTKOBOIO
pyHHYBaHHs), MOKa3aHO sK L€ IT03HAYAETHCS 3MiHI MPOEKTOpa 1 Iepepo3noiia BHYTPIIIHIX
3yCHIIb.

KurouoBi cioBa: >kuBy4icTb, Iporpecyiode pyHHYBaHHS, MEXa JXHBYYOCTi, HPOCKTHBHA
MaTpuis, HakTOpH y4acTi.

Perelmuter A. V.
ASSESSMENT OF ROBUSTNESS OF HINGED-BAR SYSTEMS

Typically in structural design, foreseeable loads are assumed in a dimensioning exercise.
Structures can, however, be exposed to largely unforeseeable events such as intense environmental
phenomena, accidents, malicious acts, and planning or execution errors. This circumstance
determines the interest in the problem of structural robustness, which has been the subject of many
recent works.
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This paper focuses on methods for assessing the robustness of hinged bar systems, considering
truss structures as an example. They are the simplest in terms of computation, but make it possible
to fully illustrate the proposed approach.

First, the differences between progressive collapse (description of the process) and the
disproportionate propagation of local failures (description of the state) are analyzed. The
generalizing nature of the concept of robustness and its differences from the concept of
invulnerability are pointed out.

The paper considers the problem of measuring robustness. The known quantitative estimates of
robustness are analyzed focusing on estimates that are invariant with respect to the stress state, as
more general ones. The paper considers estimates that use such properties of the stiffness matrix as
the condition number, or based on a comparison of the determinants of the original and changed
stiffness matrices. It is pointed out that the degree of static indeterminacy can serve only as a
necessary, but insufficient measure of robustness.

The paper considers a well-known method of robustness assessment using a redundancy matrix
determined by the forces that must be applied to assemble the system from elements with the
length different from the design one. This method is opposed to the use of a projection matrix, the
main diagonal elements of which indicate the degree of participation of the bars in ensuring
robustness. The main properties of the idempotent projection matrix are considered. The paper
illustrates the possibility of recalculating the projection matrix for the changed system with the
help of the Jordan elimination step. A simple example demonstrates assembling and changing the
projection matrix.

In addition to the failure of the bar, the case of its damage (partial failure) is also considered, it
is shown how it affects the change in the projector and the redistribution of internal forces.

Keywords: Robustness, Progressive collapse, Robustness measure, Design matrix,
Participation factors.
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