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The efficiency of a vibro-impact nonlinear energy sink (VI NES), that is, a vibro-impact damper, is largely 
determined by its design. The optimal damper design can be found through optimization procedures. However, the 
result of their work is ambiguous, their various options show different values of the optimal damper parameters. A 
thorough analysis of the obtained parameters values allow you to select the best option according to a certain criterion. 
While carrying out this analysis, we observe many interesting phenomena, namely, the synergistic effect of multiple 
parameters, rich complex dynamics of the VI NES, the presence of direct impacts between the damper and the main 
body, the dependence of the total energy on the exciting force parameters.The analysis also allows us to formulate the 
limitations of the VI NES. All these problems are reflected in this article. 
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1. Introduction 
Different vibration control devices have received close attention from scientists and 

engineers over the years. Passive, active and hybrid control systems have been developed. 
Passive control devices andsystems are commonly less complex and do not rely on a constant 
sourceof power, so they are often used. In particular, a tuned mass damper (TMD) is a 
traditional and popular mechanical vibrational absorber that isoften implemented in high-rise 
buildings and towers [1,2]. In recent decades, the world scientific literature discusses fairly new 
passive vibration control device – nonlinear energy sink – NES [3,4]. A damper of small mass 
is coupled with the main body – the primary structure – by essentially nonlinear connection. 
This is its principal difference from TMD, where this connection is linear.However, a NES 
needs to be tuned like a TMD, that is, its parameters should be selected in such a way as to 
ensure the best mitigation of the primary structure vibrations. Modern computers and software 
make it possible to analyze the dynamic behavior of nonlinear systems and observe many 
nonlinear phenomena. So, we can study the motion of the system “primary structure – NES” 
with different dampers and choice an optimal NES design. 

In modern world scientific literature, many works describe analytical, numerical and 
experimental investigations of NES. It is believed that these devices will be used to attenuate 
vibrations, in particular, in high-rise buildings and towers under the action of impulse, wind and 
even seismic loads.Numerous works on this topic demonstrate the active development of NES 
researches in recent years. There are comprehensive reviews of state-of-the-art researches on 
NESs [5-8], monographs [9,10], dissertations [4,11] and many articles on this problem [12-
15].Various types of NESs with the nonlinear connections of different types are studied. The 
restoring forces generated by these bonds may be smooth and non-smooth; they are 
discontinuous for vibro-impact NES – VI NES. A damper of this NES type repeatedly hits one 
or two constraints; the restoring force is discontinuous due these impacts; the “primary structure 
– NES” system is strongly nonlinear. The dynamic behavior of strongly nonlinear system is 
very sensitive to both the initial conditions and the parameters of the external load and the 
system itself. Therefore, the damper parameters need to be optimized in order to choose the 
optimal damper design to ensure its most effective operation [16]. Perhaps, the optimization 
mechanisms are not the same for different excitations. The author [11] emphasizes that a 
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feasible and precise design of VI NES to control vibrations of nonlinear systems will be 
difficult, despite the fact that preliminary experimental results demonstrate good reduction of 
velocity and, therefore, the effectiveness of energy reduction. The“impact rule” accepted in this 
investigation, that is, the impact simulation with nonlinear Hertz’s contact force according to 
his quasi-static contact theory makes it possible to optimize also the elastic properties of the 
contacting surfaces using Young’s moduli of elasticity and Poisson’s ratios. 

In this paper, we continue the study of the SSVI NES dynamic behavior, started in our 
previous papers [17-20].We analyze the feasibility of choosing the optimal damper design using 
various optimization procedures. Different optimization procedures show different results, 
which should be carefully checked and analyzed; the best option should be chosen among them. 
Since the optimization procedures do not give an univocal answer, choosing the optimal design 
becomes quite complex and requires a selection criterion. All options proposed by the 
optimization procedures clearly demonstrate the limitations of the VI NES. When considering 
the results of optimization procedures, the synergistic effect of multiple parameters is 
observed.Optimizingsevendamper parameters instead of two improves the damper efficiency 
and “calms” its complex dynamics, providing regular periodic motions instead of irregular 
regimes. 
Thus, the goals of this paper are: 
 comparethe results of various optimization procedures and select the best among them 

according to a certain criterion; 
 show the dynamics of VI NES with an optimal design; 
 show the limitations of VI NES; 
 demonstrate the synergistic effect of multiple parameters optimization.  

 

2. Brief model description  
Since this article continues the studies of VI NES, which were begun in our previous works 

[17-20], the mathematical model of the vibro-impact system under consideration was described 
in details in these works. Therefore, we will give its brief description that is necessary for 
understanding this text. The calculation scheme of two-body 2-DOF vibro-impact system 
(Fig.1) corresponds to the conceptual scheme of single-sided vibro-impact nonlinear energy 
sink (SSVI NES) [4, 17]. 

 

 
Fig. 1. Calculation scheme of SSVI NES 

m1=1000 kg 
k1 = 3.95·104·N·m−1 
c1 = 452 N·s·m−1 

The parameters of the primary 
structure, which are set and cannot 
be changed 
 
P= 800 N  

 
The damper mass m2  should be muchless than the primary structure mass m1, up to 1%.The 
connecting springs with stiffness k1 and k2 are linear. The base, along which the damper moves 
without friction, is rigidly connected to the primary structure and has a barrier at its right 
end.The nonlinearity and discontinuity of this system are created by the damper impacts on an 
obstacle and, as studies have shown, by the presence of collisions between bodies.The initial 
distance between the bodies is equal to D; the distance to the right movable wall is C; their 
difference defines the clearance, which is (CD). 
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The motion equations for this system are as follows: 

             1 1 1 1 1 1 2 2 1 2 2 1 1 1 ,con conm x c x k x c x x k x x D F t H z F z H z F z              

           2 2 2 2 1 2 2 1 1 1 .con conm x c x x k x x D H z F z H z F z                        (1) 
The initial conditions are: at t =0 we have  

       1 2 1 2 00 0, 0 , 0 0, 0 0, 0.x x D x x                                     (2) 

Theexcitingforce is harmonic    0cosF t P t    with period 2T    . In the future, 
we plan to study the dynamic behavior of the SSVI NES under action of impulsive, in 
particular, blast force. ( )H z  is the Heaviside step function,which “actuates” the impact contact 
force ( )F z  that acts only during an impact.It is this force that simulates an impact. We consider 
it as nonlinear and write it in accordance with Hertz’s contact quasi-static theory [21].Since the 
damper hits both the primary structure directly and an obstacle,the contact forces are different 
for these impacts. The contact force at impact between the bodies has the following form: 

2 2
3 2 1 2

1 2
1 21 2

1 14( ) [ ( )] , , ,
3 ( )con

qF z K z t K
E EA B
  

     
    

.              (3) 

The contact force at impact on the right obstacle has the same form: 
2 2

3 2 31 4
1 1 1 1 3 4

3 43 4 1 1

1 14( ) [ ] , , ,
(

( .)
3 )con

qF z K z K
E EA B

t   
     

    
         (4) 

Here 1 2 3 4, , ,     are Poisson’s ratios; 1 2 3 4, , ,E E E E  are Young’s moduli of elasticity for 
fourth colliding surfaces; 1 1 1, , , , ,A A B B q q  are constants characterizing the contact zones 
geometry. The absorber surfaces, both left and right, are assumed to be spherical with large 
radii R  and 1R  (for example, R=R1= 1 m); the contact surfaces of the primary structure and the 
right obstacle are flat. Then 1 2A B R  , 1 1 11 2A B R   (A=A1=B=B1=0.5 m-1); 

1q q  0.319 as in the collision of a plane and a sphere. It is the moduli of elasticity and 
Poisson’s ratios that characterize the elastic properties of the colliding surfaces. Therefore, the 
analysis of their values should allow us to see the influence on the system dynamics in more 
detail than the analysis of the restitution coefficient. The variables z  and 1z  are the colliding 
bodies rapprochement upon impact, since the Hertz’s theory allows local deformations in the 
contact zone. 

A direct damper impact on the primary structure occurs when 1 2 ;x x  1 2z x x  . A 
damper impact on an obstacle occurs when 2 1x x C  ; 1 2 1z x x C   . 

3.Results and discussion 
3.1. First version of the optimization procedure 
The scientific literature recommends fulfilling the optimization procedures to provide such 

NES design that will ensure its maximum efficiency in mitigation of the primary structure 
vibrations. Our computational experience confirms the importance of this recommendation 
[Наши статьи]. However, the optimization procedures performed in different ways produce 
different results, which need to be analyzed in order to choose the best one among them. 

We carried out the optimization procedures in two versions using the fmincon and 
fminsearch programs of the MatLab platform and compared their results. In both versions, the 
optimization was performed in three stages. At the first stage, three or two damper parameters 
were optimized. In the second and third stages, four or five more parameters were optimized, so 
a total of 7 parameters were optimized. 

In the first version of the optimization procedure, at the first stage three parameters were 
optimized: the damper mass 2m , its stiffness 2k , and the distance to the obstacle C, which 
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determines the clearance. In the second and third stages, the damping coefficient 2c , the initial 
distance between the primary structure and the damper D, and Young’s moduli of elasticity for 
the colliding surfaces 2E  and 4E  were optimized. They are shown in burgundy in the second 
rows in (5). In this way, the following two complete sets parameters were defined for two 
damper variants: 

2m =22.68 kg, 2k =2481 N·m-1, C =0.0683 m, 

2c ==41.4 N·s·m-1, D=0.046 m, 2E =2.26·107 N·m-2, 4E =2.18·107 N·m-2, 
 

2m =37.88 kg, k2= 414.6 N·m-1, C=0.0747 m,                                                                          (5) 

2c =27.9 N·s·m-1, D =0.057 m, 2E =2.21·107 N·m-2, 4E =2.05·107 N·m-2. 
The comparison of the dynamic behavior of the vibro-impact system with the dampers with 3 

and 7 optimized parameters demonstrates the synergistic effect of the multiple parameters. The 
damper efficiency changes little, but the dynamic behavior is completely different. Table 1 
shows this difference depending on the exciting force frequency. 

Table 1 

Regimes implemented in a system with dampers with different numbers of optimized 
parameters depending on the exciting force frequency at P=800 N 

ω, rad·s-1 6.2 6.3 6.4 6.5 6.7 7.0 
m2=22.7 kg 

with 3 
optimized 
parameters 

Chaotic 
Chaotic; 
Intermit-

tency 

Chaotic; 
intermit-

tency 

Chaotic; 
intermit-

tency 
T,1,2 T,0,2 

with 7 
optimized 
parameters 

Chaotic Chaotic 4 T,8, 8 T,1,2 T,1,2 T,1,2 

m2=37.9 kg 
with 3 
optimized 
parameters 

Intermit-
tency Chaotic Chaotic Chaotic T,2,2 Chaotic 

with 7 
optimized 
parameters 

Transient 
chaos; T,3,3 Chaotic Transient 

chaos; T,2,3 Chaotic Transient 
chaos; T,2,2 Chaotic 

 
Following the logic of [22], we use the notation nT,k,m, which defines the regime of 

periodicity nT (where T is the exciting force period) with k impacts between the damper and the 
primary structure and m impacts of the damper on an obstacle. The Table clearly shows a rich 
complex dynamics that is realized in a vibro-impact system consisting of a primary structure 
coupled to a NES. Indeed, in [8], the authors note this phenomenon as one of the VI NES 
disadvantages: ”One disadvantage of VI NESs is that coupling it with a primary structures leads 
to very complex nonlinear dynamics that is difficult to analyze analytically without making 
several simplifications”. The Table also shows the presence of the direct damper impacts on the 
primary structure in all realized modes. 

Fig. 2 and Fig. 3 show the characteristics of the complex modes that occur in a vibro-impact 
system with these two dampers with 7 optimized parameters at an exciting force frequency 
close to the resonant one =6.2 rad·s-1. The presence of direct impacts between the VI NES and 
the primary structure is very clearly visible. 

Fig. 2 shows the picture that is typical for the chaotic movement. In particular, a ball of the 
phase trajectories in Fig. 2 (d) and a smear of the Poincaré map in Fig. 2 (b), (c) confirm its 
chaoticity. The contact forces in Fig. 2 (b) significantly exceed the exciting force. Fig. 2 (c) of 
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the relative damper displacements clearly shows the direct damper impacts on the primary 
structure at (x2-x1) = 0 and on an obstacle at (x2-x1) = C = 0.0683 m. 

  
(a) (b) 

 

  

(c) (d) (e) 
Fig. 2.The characteristics of chaotic regime for the system with a damper of mass m2=22.7 kg with 7 optimized 

parameters at the exciting force frequency  = 6.2 rad·s-1.(a) Contact forces during damper impacts on the primary 
structure directly. (b) Contact forces when the damper hits both the primary structure directly in blue and an obstacle in 
green over a narrower exciting force range. (c) The relative damper displacements. (d) Phase trajectories with Poincaré 

map in red for the damper. (e) The Poincaré map for the damper 
 
Fig. 3 shows a typical form of transient chaos, when chaotic motion abruptly turns into the 

periodic one for the same values of all parameters. Fig. 3 presents the movement characteristics 
in both phases – in chaotic and in periodic T,3,3. 

Fig.3 (c) on the right panel clearly shows 3 direct damper impacts on the primary structure at 
(x2-x1) = 0 and 3 damper impacts on an obstacle at (x2-x1) = C = 0.0747 m. The phase trajectory 
in the form of a closed curve and one point of the Poincaré map on the right panel in Fig. 3 (d) 
correspond to T-periodic motion. 6 jumps of damper velocity in this figure occur in 6 its 
impacts per cycle - 3 on the primary structure and 3 on an obstacle. 

3.2. Second version of the optimization procedure 
The second version of the optimization procedure differs from the first version in the 

exciting force frequency for which the objective function was calculated. In the first version, 
this frequency was far from the resonant one =7.23 rad·s-1. On the contrary, in the second 
version it is almost resonant one =6.3 rad·s-1. At the first stage of the second optimization 
procedure version, two damper parameters were optimized: its mass m2 and stiffness k2. The 
remaining five parameters were optimized in the second and third stages. The two complete sets 
of parameters for the two dampers are as follows: 

m2=39.67 kg, k2=1550.7 N·m-1, 
C=0.1244 m, c2=643.6 N·s·m-1, D =0.1002 m, 2E =2.205·107 N·m-2, 4E =2.047·107 N·m-2, 
 
m2=62.02 kg, k2= 198.24 N·m-1, 
C =0.0498 m, c2=538.8 N·s·m-1, D =0.000001 m, 2E =2.205·107 N·m-2, 4E =2.047·107 N·m-2. 
These parameters are very different from the previous ones. Firstly, the dampers masses m2 

are larger. The scientific literature recommends that the NES mass be of 1% of the primary 
structure mass. In the first version of the optimization procedure, the minimum damper mass 
was determined to be 2%, in the second version  4 %. Secondly, the remaining parameters  
the damper stiffness k2, the damping coefficient c2, the distances D and C, which define the 
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clearance, vary greatly even for close damper masses m2= 37.88 kg and 39.67 kg. Here again, 
the dynamic behavior of a system with dampers with two and seven optimized parameters is 
also very different that demonstrates the synergistic effect of the multiple parameters. Table 2 
demonstrates the manifestation of the synergistic effect in a strong change in the implemented 
motion regimes.  

 

 
(a) 

  
(b) 

  
(c) 

  
(d) 

Fig. 3. The characteristics of transient chaos turning into periodic T,3,3 for the system with a damper of mass m2=37.9 
kg with 7 optimized parameters at the exciting force frequency  = 6.2 rad·s-1. (a) Contact forces during damper 

impacts on the primary structure directly. (b) Contact forces when the damper hits both the primary structure directly in 
blue and an obstacle in green over a narrower exciting force range. (c) The relative damper displacements. (d) Phase 

trajectories with Poincaré map in red for the damper 
 

 
 
 


