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The calculation of cylindrical anisotropic layered composite shells under the action of end torques in a spatial
setting is considered. The considered anisotropy is characterized by one plane of the material's elastic
characteristics. To derive three-dimensional systems of equations of subcritical equilibrium and stability of the
spatial theory of elasticity, a modification of the Hu-Washizu variational principle was used. Solving the problems
of the pre-critical stress-strain state and stability is carried out using the Bubnov-Galyorkin methods, discrete
Fourier transforms and numerical discrete orthogonalization. The problem of stability of an anisotropic cylindrical
thick-walled shell with an increase in the number of cross-reinforced layers is considered, depending on the angle of
rotation of the main directions of elasticity of the material and the direction of torque application.
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Introduction

A small number of works are devoted to solving problems of the stability of shells made of
composite materials, most of which are based on the use of two-dimensional classical or
refined theories [1, 15, 16]. This leads to the fact that for thin shells, the low shear stiffness and
in homogeneity of the material along the thickness are either not taken into account at all, or not
taken into account to the full extent. On the other hand, the geometric parameters of shells made
of modern materials do not always meet the conditions of applicability of both classical and
refined versions of the theory of shells. Therefore, the study of the stability of composite shell
structures in a three-dimensional setting [5, 6] is expedient and relevant.

Analysis of recent research and publications. In the works devoted to the calculation of
the stability of shell structures in a spatial setting [5, 6, 7], attention is focused on isotropic and
orthotropic shells. The use of materials with this degree of anisotropy narrows the class of
application of such composite structures. Note that when forming shell systems from fibrous
composites by winding them on mandrels, a discrepancy arises between the main directions of
elasticity of the orthotropic material and the axes of the curvilinear coordinate system of the
shells (Fig. 1). The material of such a structure in the axes of the shell must be considered as
having one plane of elastic symmetry, which is parallel to the middle surface [1, 3, 4, 10+15].
The lack of works devoted to a comprehensive analysis of the stability of shell structures made
of materials whose elastic properties have one plane symmetry is associated with the difficulties
that arise when compiling their solving models, which is caused by the interconnectedness of
deformations of tension (compression), shear, bending and torsion. However, taking these
features into account makes it possible to design shell systems from modern materials while
ensuring the design bearing capacity.

The aim of the study. The presented paper shows approaches to obtaining three-
dimensional equations of the subcritical stress-strain state and stability of cylindrical
anisotropic layered cylindrical shells in the spatial formulation of the theory of elasticity
based on the modification of the functional of the generalized Hu-Washizu principle. The
solution of the system of equations of the stress-strain state is carried out by combining the
numerical methods of direct and discrete orthogonalization, the system of stability equations is
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solved by the joint application of the
Bubnov-Galyorkin method and
numerical discrete orthogonalization.
Coordination of subcritical ~ stress
components determined by the method
of straight lines with the procedure of
the Bubnov-Galyorkin method when
solving the stability problem occurs
using the method of discrete Fourier
transformations. Using the presented
methods, the stability of cylindrical
thin anisotropic layered shells made of
material with one plane of elastic
symmetry under the action of end shear
loads simulating external torques was
investigated.

~

Fig. 1. Cylindrical non-thin anisotropic shell under torsion

1. Statement of the problem and method of solution

1.1. The problem of the subcritical stress-strain state

1.1.1. Hu-Washizu variational principle. In accordance with the variational principle of
Hu-Washizu [17], the equilibrium equation, elasticity ratio (equation of state), geometric ratios
and corresponding boundary conditions can be obtained from the condition of functional
stationarity IT; , which is defined with integral:

HF{M{W (&) =T (uj)+@(u;) -0 [eij _%(“i:j HUji )}}dv +][ ¥ ()dS =[] pi (-G )}ds' (1)
Vv S S2

Here, displacements u;, deformations e;;, stresses oy, stresses p; on the surface S,
caused by displacements vary without additional conditions u;. Also in this functional W(eij) -

potential energy of deformation, T(u;) — Kinetic energy, ®(uy;), W(y;) — potentials of
volumetric and surface loads, u; — components of the displacement vector, a semicolon before
the parameters i, j the covariant derivative along the coordinate with the corresponding index i,

i k=1,2,3.
Potential energy of deformation in the vector-matrix representation is written as follows
W (e;j) Z%ET Be, )

where &' =(&3.,8001 &7 2819+ 2617, 28,9) IS the vector of deformations, B is the matrix
coefficients of elasticity.

If we enter the stress vector o' = (o5, Cgo» Orrr Trgs Trzr T19) then from the condition of
stationarity S11;, we get the following equations:

o=Bg; (3)
e=¢(); 4)
ojj.j+ fi=0 (5)

and also boundary conditions ojn; = IEI on the surface S; and displacement u; =u; and stress

pi = oyn; onthe S, surface.

In ratios for deformations (4) the relationship between deformations and displacements is
presented. Reversed to ratios elasticity (3) dependencies deformations from tensions let's
introduce as
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e=Ao, (6)
where matrix A=B™.
Coefficients matrices A let's mark through a;;, a matrices B — b;; (i, j =1,6) . Matrices A

and B — symmetric, since a;; = by =D;;. In the future, the relationship between the matrices

aji»
A and B is also established.

1.1.2. Modifiedmixed variationalprinciple. Let us follow the path presented in [13, 14, 16]
to derive the modified Hu-Washizu mixed variational principle and divide vectors ¢ and ¢ on
two parts, in order to

T . T T AT
01 =(O-rrv Tro Trz)' %) =(O-zz’ O ng), & =(‘9rr1 €ro grz)’ &2 =(5zz’ €0 526)' ()
To shorten ratio entries elasticity (6) will be record in matrix form

{51}:{'6‘11 Alz}{ol}, ®)
& Ao Ay |02
where for blocks A;;, according to the accepted division (7), with matrices A in (6) for an
anisotropic material whose elastic properties are in one plane, we will get:
a;; 0 0 8y 83y Agg a; 0 0 a, &
Ai=| 0 ay a5l Ap=|0 0 0 |5 Ay={ay; 0 015 Ay- aié a222 326 ©)
0 a5 & 0 00 3 0 0 % 8 Ggp

After simple mathematical transformations the expression for W(e ) will be presented in the
form:

T
W, =W (o1, £;) -0y (5.1 —Eij (U)) 201 B1101 252 (B, ~BLB 312)52 +

+(<91T (u)+&; (U)B], Bﬁl)gl +6) (U)(Bzz—BszBﬁlBlz)gz- (10)
In accordance with (1), we write down the potential of surface loads
[ ids; =[] pi (u - 5)ds; = [[[ (aru, +dgug +azu,, hy,t)+
S Sy St
+(q:ur + qgu@ + q;uzv hn+1v t):| dsl - ” Pi (ui _Ji ) dSZ : (11)
S2
Here u,, u,, u, aredisplacements coinciding with the axes of the adopted cylindrical coordinate

system (Fig. 1); h; and h are the thicknesses of the first and n +1 shell layers.
We will also perform the variation of the potential of surface loads (11), after which we will
obtain the variation of the work of external forces

aﬂl{f u; )dS; = jj 08U, + 00U, + 0,8, )dsl+HZp,5u — &0 )dS, (12)
S, i=1
where g, =q; +0; , 0, =0, +0j, 0, =q; +0; ,and p, =0 for i =13.

Let's write the final form of the functional IT; presented in (1) in the form

n1=m[vv(al, —T(u)]av - ”\y dS ”p U;)ds, . (13)
\% S
The variation of the functional (13), due to the change in the components of the vector of
displacements u and stresses o, takes the form

ot = [[[[ -l Biten+ (sl @)+ coBLB Jor - S 6T BT oy - 16,837 [y -
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_Eg; (Bzz B 3111512)32}552 +|:5; (U)(Bzz B 5111512)82 —(ng (u)+e] (u)BLB" )Gl J&' -

~T(u)du}aV + £ [(y(u)su)ds; - i [ pi(u-1)spds, . (14)
For further deriyation, we will use Iilnear.geometric rél_ations in the form [91 _

Here e!, ei%,, el are relative linear deformations along the directions of the coordinate axes

r,0,z and e ,, e, e, are relative shear deformations tangential to the corresponding

coordinate surface, u!, uy, u! are linear displacements in the directions of the indicated axes, i
— the shell layer number.

From the condition of stationarity (14), using expressions for stresses, displacements,
geometric ratios (15), as well as variations in the work of external forces (12) and equating
expressions for independent variations of stresses and displacements in the integral over the
volume V to zero, we obtain system of differential equations in the form

. . . ; : ) . : i O i
aU:T :_CI23 +1O_ir _ 81,',2 _267:,9 +CIL22Uli, i%_ﬁ_cli;%_‘r 026 6U9 +CI22 8u9 +q;
or r oz r o0 r r oz r>00 r o % 00

i i i i 2 i 2, i i 2
51,2 —CI 50'” —lfi _Cﬁaur CI a UZ _Cﬁa UZ _012 +C66 8 Ue

o Ba v v o Mag? (2 et r 0200
C36 00 _Cizs au; _ 2cis 0%U] N o%uy _Cize 0°uy +q,:
r 00 %290 r a0 o2 12 997 Y
Otrg _Cp 00w 2 i cp U clp+eg Oy i 0%y oy Oy
or r 00 r " 2 o0 r o0 " 5?2 12 962
| 0w Cos Oy i O°Uy oo DUy 2cp 0y
+C36 16 5 2 > +0g;
oz r oz oz rc o6 r o0z00
oul i i chs i oaub clsaul i oauh chyaul
—=c + Byl 2 8z ol 0 228770
or ¥m T8 % r e *a r oo
6Uiz i i au'r au"g i i 16Ui 1 i
=QscTy, +AueTrp — y —>=QueTy, T ATy ————+—Uy . 16
or 55°rz 45°r60 oz or 45¢rz 44°r@ r oo g ( )

Here r is the radius of the cylinder, which does not depend on the coordinates z and & ; o{r ,
t1,, 1., — stress tensor components (7); u}, u}, u! —movement of the shell in the directions
of axes z, @, r respectively. Steels cf(, (k, 1 =1, 2, 3, 6) are characteristics of the material of
the shell layer, which are determined using mechanical constants a,, [8]:

S S ORI i 2). i1 (i i i A )
cll__ 322366 _326 ’ C]_2 =1 1 a16a26_a12a66 !
‘Azz‘ ‘Azz‘

i 1 i 2. i1 (i i i i).
Coo =77\ @166 —ls |5 Cig = T 7\B12826 — 32006 )
‘Azz‘ ‘Azz‘



78 ISSN 2410-2547
Omip matepiaiis i Teopis cnopya/Strength of Materials and Theory of Structures. 2023. Ne 111

i _ 1 ( i i i i ) i L (i i 2.
C26 = _I a12a16 — a11a26 ’ 066 - _I allaZZ - a12 !
‘Azz‘ ‘Azz‘

. . . . . 2 . . . . . . . . . .
1 1 | 1 | 1 1 1 1 | 1 1 1 1 1 .
‘Azz‘ = Agg (allaZZ —a ) +az (alzale — a8 )+ a6 (312 A —Az2815 ):

i i i i i i i i
C13 =301 + 3010 + 836016 Co3 = 43C1p +823C +a36C06
i i i i i i i i i
C36 = 813016 +823Co6 T 336Cess  C33 =az3— (313013 +853C53 +a36C36 ) (17)
Thus, when using the variational equation (14), a heterogeneous three-dimensional system

(16) is derived from six differential equations of equilibrium of the linear theory of elasticity. It
is written in partial derivatives with respect to six components of the amplitude values of the

vectors o7 =(oyr,7rp, 7y,) @nd UT =(Uy,Up,U,) and is used to study the stress-strain state of
anisotropic non-thin composite cylindrical shells. To obtain it, the modified Hu-Washizu
variational principle was used, which allows writing down the boundary conditions
corresponding to the equations.
The generalized Hooke's law based on (3) and (6) and taking into account notations (7) and
(17) can be written as:
Oy =C11€5, +Cio€pp +Cle€zp —CizOrr ;
Tpo = Ci2€7 +Co2€pp +Co6€70 — Co307r
T30 = Cig8% +Cas€pp +Co6E20 —C36T1r
€y =Cl3€;, +Cosehy +Ca6€20 +Ca30T ;
€, =571y +855Tr 5 Crp = AuTrg +AysTry - (18)
The solution of system (16), in the case of torsion, must meet the conditions on the lateral
surfaces:

at r=r
o0 (r,2,0)=0; 7%(r,2,0)=0; 7%(r,2,6)=0;
and r=r,
on(1,,2,0)=0; 73,(r,,2,0)=0; 1{y(r,,2,6)=0. (19)
Conditions at the ends at z=0, z=L (Fig. 1), for example
T,0 = Thgs Trp=U; =0, (20)

Conditions for rigid contact of layers for stresses and displacements:
on(®)=0' () (=t (6);  Tp(K)=775 (5);
=00 nE)=wTm); upn)=ug). (21)
Here i is the number of the shell layer, 7., the shear stress distributed on its ends

corresponding to the applied twisting moment.

1.1.3. Research methodology. One of the numerical methods that allows reducing the
dimensionality of system (16) is the method of straight lines [2, 4, 11]. Given that in the work we will
consider only cases of axisymmetric deformation, we will reduce the thus obtained two-
dimensional system of partial differential equations based on (16) to a one-dimensional system
of ordinary differential equations by replacing the coordinate derivatives with difference
relations z .

After simple mathematical operations [11], dependencies (16) are transformed into a one-
dimensional system of the order 6nof ordinary differential equations with respect to the
derivative on the coordinate r, which in abbreviated notation has the form



ISSN 2410-2547 79
Omip marepiais i Teopist cnopya/Strength of Materials and Theory of Structures. 2023. Ne 111

g—V:T(r)V , (22)

where accepted y= {ar,,rﬁz,rm,uﬁ,ui,u}g, oL iy ,u?’l;ug’l;aﬂ;rr”Z;rPH;uP;uQ;ug}
with boundary conditions (19); T(r) — matrix of coefficients with unknown stress and

displacement components, n — the number of equidistant straight lines (cross-sections) that
divide the interval of the change of the derivatives by the coordinate along the generating line z.

The solution of the one-dimensional problem obtained in this way about the subcritical
stress-strain state of an anisotropic non-thin layered cylindrical shell during torsion is carried
out using the numerical method of discrete orthogonalization [1, 4].

1.2. The problem of stability

1.2.1. Modified mixed variational principle. To obtain the system of stability equations, we
will use the elastic functional W(eij) (10) and use the following expansions in the form [9]:

or=ocl +ac® +a

o azg(z)

2 (2).

&= 81 +aé&;

&y =&y +a5(1) +a25(2) (23)
Here, the parameters of the stress-strain state with zero are subcritical values of strains and
stresses; with indices (1) — disturbed; with indices (2) - also, only in a square; « - an infinitely
small constant that is independent of coordinates.

Substituting (23) into (10) and performing the appropriate transformations, we obtain the
following expression of the potential energy of deformation

W, = —%(0 + aO'(l) + a20(2)) Bii (01 + ao(l) + aza(z))

; (82 + agg') +a 522)) (B22 812811 Blz)(gz +ag§1) +a23(2))
+[(£10 + agl(l) +a28(2)) (58 +a5§1) + azg(z)) Bsz Bl_ll}x

®

(0'1 taoy”’ +a 0'1(2)) (82 +asd) +a28§2)) (Bzz—szBl’llBlz)(gg +ag§l)+a2$£2)) . (24)

After substituting (24) into (1) from the condition of stationarity of the variation of the
functional (1) caused by the change in the components of the vector of displacements u and
stresses  o;, when using expressions for stresses of =(oy, 7, 7,,), displacements

u" =(uy, U, u, ), and geometric ratios in the form [9]

1 L
o) :5U§) ) _15Ua Lo ol au® e _aU() 1oud |
=T U T e Th T Ty Ty T e
1
@ _ 6u§l) + augl) . (1) aUé) —lu(l 1
" o T o v T e
neglecting the dependences for the variation of kinetic energy and the potentials of surface and
volume loads, equating the expressions for independent variations of stresses ooy, , 97,9, 07,
and displacements du,, du,, du, in the integral over the volume V to zero, we obtain the

following system of stability equations in the spatial setting of anisotropic thin composite
cylindrical shells :
aUrr :_023 +1O’ _l afrg _8rrz +Cl_2% Coo Coo 8U9 cﬁ@uz +Cﬁ6“9

: (25)

or r " re0 ooz r oz 2" 200 (200 r oz
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au au duy 1 0u, o2u o%u
+(——ZQ3—%(6—5+UJ023—( o4+4 ]036 O'rrC33+r82 G3+ 1

—TIe¢c
oz r 00 r 562 28

roo 2 r 0200 " a o2 0200 o1
+azug+lazuz . +a"”c3j—ai TO+_2@01+ ou 2%y o .
o2 roaod) X o B) a | " 0200 2 r| 902 00

62
+[ Uy 1au}:36+acrrr c33j_;6i+lug)fpg;
.

0200 1 9p? 00 r 06
0ty 00y . 100y 1 0%, 2c15 0°U, Cip AUy o O°U, Cip+cgs Oty
o a2 BT ae BTN T g o r? o2 v Gaod
Co OU; Oup ey 0 Suy (U o%u, 1 0%y,
— s~ | o5 — > Gzt — G+
re oo oz re o0 oz oz r 06°

o%u, o%u, or or ou
+2-—Lc -2r r 210 g, +—2 - ZJ 0+
oy SGJO_rr ( ( s a M5t assJ pe 47

2
W 0 u,+8rrga45+61rza5 10y, )T
02060 06 06 r 060

2 2 2
Otrp 150rr 23*66” ,\36_27 ) Clpt+Cep O°U; Cop Oup 07Uy Cpp 0"l Cog Oty
T A% r

a r a0 oz r r o200 200 P2 2 502 r oz
2 2 2
2 92 0 0
—016a uzz 0226 ° UQZ 60t 1” +18ur r,5a44—rrza45+r—u2‘9 °13+l—u£9 Cos+
22 r2 o002 r o0 \ r Y roe oz r oo

2 2
2 du, 1 0“Uy ou, j 10Uy 10U, Oty oty
4oy —LUCyy +2—CCag +2—LC —2r + g+ s |-
BB 500 0 T o roz rowo oz *®

Ay + a
rog rog? 00 o0 ) roe r

X 6L01 +1(6 —Z+u )023*{6“0 +laij036+0rr033,
or oz 06 oz 00
ou,  du,
o oz
aalf = %Ue _%%Jrfraazm T 77845 (26)
In (26) r — the radius of the cylinder (Fig. 1) is independent of the coordinates z and @; o, ,

2
_a;_zajrgz{_z(l QUg 107U Otrg 0Ty 1184 1, )Trg,

+Tr98y5 + Tr;855 5

Ty, Ty — Stress vector components (3); uU,, Uy, U, — moving the shell according to the

directions of the corresponding axes z, @, r. Stresses oo, 7o and 72, are determined by

solving the problem of the subcritical stress-strain state (22).
Thus, using the modified Hu-Washizu variational principle, a three-dimensional system of
six homogeneous differential equations of stability in partial derivatives with respect to the

components of the vectors o; = (o, 7yg, 7r,) and is obtained u' =(u,, u,, u,).
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The given system of stability equations (26) must meet the conditions on the side surfaces of
the shell of type (19), conditions at the ends (20) and conditions of rigid contact of layers for
stresses and displacements (21).

1.2.2. Research methodology. We will reduce the dimensionality of the three-dimensional
system of stability equations (26) using the procedure of the Bubnov-Galyorkin method. Let us
decompose the functions describing stresses and strains (26) into double trigonometric series so
that conditions (20) are satisfied along the generator z and take into account the periodicity in
the circular direction &

on(r,z,0)=> > [yl,pk (r)cosk@ + yj p (r)sin k.9]sin InZ;
m=1k=0

7, (1,2,0) = 3. Y[ V2 pk (1) COSKO + Y o (r)sin ke [cos 1,2 ;
m=0k=0

79(r,z,0) = i i [ys,pk (r)sinké + y3 m (r) cos ke]sin I,Z;
m=1k=0

u(r,z,0)=> > [y4,pk (r)coské + yj i (r)sin kerin 1,z;
m=1k=0

u,(r,z,0)=> > [Y5,pk (r)coské + yg p (r)sin kHJcos Wz ;
m=0k=0

Up(r,z,0) =2 > [yﬁlpk (r)sinkd + yéymk(r)coske]sin Iz - (27)
m=1k=0

In (27) Yiipk Yimk (i=16) are components of stress components oy, 7, Tr5 and

displacements u,, u,, u, decomposed by trigonometric Fourier series, p, m, k are wave
numbers in the series. Parameter |, =mz/L, where L is the length of the generating cylinder
(Fig. 1).

To take into account the variability of stresses for the length of the envelope, we use the
discrete Fourier transform operation. In accordance with it, we present the distribution along the

z axis subcritical values o°, 7, and 7>, , obtained using the straight line method, in the form of
series:

O n-l o : n-1 o .
0% (@) =0+ Y a’ cos—2Z_7 4y pom 52217

i=1 “Zod i=1 - Zog
TI(’)Z n-1 et
1 ) 1 .
i=1 . ZOd i—1 . ZOd
Tro n-1 o A n-1 o ]
709(2) = % > af ‘Cosﬂuz b -sin 27, 28)
i=1 . ZOd i1 . ZOd
where the following notations are introduced: i — the number of members of the series

i=1Ln-1; n=(N+1)/2; N is the number of equidistant points by which the shell is broken
along the generating cylinder when solving the problem of the subcritical stress-strain state;
z,4 — the distance between these points along the z coordinate in the cylindrical coordinate
system (Fig. 1); a{,’?', agg, agsﬁ, ai"?f, afg, ai’?‘q, bi"gf, bi’g, bi’?*’ — coefficients of the
trigonometric Fourier series into which the corresponding components of the stress state are
decomposed o7 ;. 7o, Trpj . J=1+N.
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By separating the variables in equations (26) using dependencies (27), while taking into
account relation (28), we obtain an infinite one-dimensional system of ordinary homogeneous
differential equations of stability of a cylindrical shell in the normal Cauchy form

%:T(r,ﬁ)?, T(r, A)=t;(r, 2), i=Lo0, j=Loo. (29)

I (29) ¥ ={Yapk: Vo pk: Ya,pk: Ya, ok Y5, pi: Yo pks Yiumk: Yok Yamk: Yamk: Yamk: Yok  the
solving vector function T(r,4) is a matrix with variable coefficients that depends on the

argument r and the load parameter 4.

The system of stability equations (29) under the conditions on the surfaces (19) is solved
using the numerical method of discrete orthogonalization [1, 4].

The presented algorithm is implemented in the form of packages of application programs for
a PC, where the setting of the parameters of the subcritical stress-strain state and the solution of
stability problems of non-thin anisotropic cylindrical shells subjected to torsion are combined in
a single process.

2. Implementation of the proposed method of setting critical loads of a composite
anisotropic cylindrical shell. Let's investigate the effect of changing the number of layers of an
anisotropic shell on the values of its critical loads in the case of torsion. To do this, consider the
stability of a cylindrical shell with a length of L = 1,2 m; radii of the inner r; =0,585m and outer
surfaces r, =0,615m. The shell is formed by reinforcing the composite at angles iy to the z

axis. Fiberglass with the following physical and mechanical characteristics was selected as a
composite material: E;=44,5Eo, Ew=En=10,7E0, G.=G,s=4,18Ey, Gr,=8,48Eo, Vvy,=0,26,
v»=0,0628, Eo=1000MPa .

In fig. 2 presents graphs describing the dependence of the critical values of shear loads

(torques) S5, on the angle of rotation  of the main directions of elasticity of the composite
material and the number of cross-reinforced +y layers for the cases of application of the end
torsional moment in positive (Fig. 2, a) and negative (Fig. 2, b) directions.

In fig. 2 (a), (b), plotted in the S;, — axes v, the numbering of the curves corresponds to
the number of layers reinforced at angles +y to the resulting cylindrical shell, the curve 1/
(dashed) represents the results of calculating the stability problem of an anisotropic cylinder
according to the orthotropic approach when the mechanical c,; characteristics C,g, Cg5, 845
of the accepted generalized Hooke's law (18) have zero values.

19

3.-- 5 /
19 - . ~ 1
P SR R 7.8
17 " G B / 17 ]
15 \5 15
€ 71 o
T3 GA PN £ 13
=3 ™ =3
5 R 5 11
n 11 7 "
9 9
7 7
0 30 o 60 90 0 30 o 60 90
v y

(a) (b)

Fig. 2. Values of critical shear loads ch for one- (1), two- (2), three- (3), four- (4), five- (5), seven- (7), eight-layer

(8) shells and the results are obtained on the basis of the orthotropic approach (1') for the direction of application of the
twisting moment: (a) positive; (b) negative
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From the analysis of the results presented in fig. 2 it is possible to draw the following
conclusions. The critical values of shear loads depend on the angle of rotation of the main
directions of elasticity of the material, the number of cross-reinforced layers, and the direction

of application of the twisting moment. We also note that the critical loads S;; determined for

the anisotropic shell according to the orthotropic approach (curves 1) do not depend on the
number of layers with cross reinforcement and remain constant. At the same time, an increase
in the number of layers with cross-reinforcement leads to an approximation of the critical loads

S5y, determined taking into account all the constants of the generalized Hooke's law of the

considered material to those obtained according to the orthotropic approach. If the maximum
discrepancies between the results for a single-layer anisotropic cylinder (curve 1) and the
critical loads obtained for the orthotropic equivalent shell (curve 1) are 46% and 69%,
respectively, from positive (Fig. 2 (a)) and negative (Fig. 2 (b)) applied loads, then for the two-
layer (curve 2) in comparison with graph 1’ the differences decrease to 25% and 16%,
respectively, according to the signs of the loads. A further increase in the number of layers with
cross-reinforcement leads to the fact that with seven to eight layers, the discrepancy between
the anisotropic and orthotropic approaches to the calculation decreases to a maximum of 5%. At

the same time, we note that the critical loads S;; obtained for anisotropic cylinders with the
number of layers seven to eight (curves 7, 8) from the twisting moment applied in the positive
direction (Fig. 2 (a)) are slightly greater than those S;}, determined according to the orthotropic

approach (curve 1), and from the negative, on the contrary, smaller (Fig. 2 (b)).

In general, from the analysis of the results, it can be seen that for the considered anisotropic
cylindrical shells, increasing the layers of the cross-reinforced package to seven to eight or
more leads to the possibility of calculating such shells according to the orthotropic approach,
which confirms the results given in [1].

Conclusions

The paper proposes an approach to obtaining and solving three-dimensional systems of
inhomogeneous equations of the subcritical stress-strain state and homogeneous partial differential
stability equations for anisotropic thin cylindrical shells based on the modification of the Hu-
Washizu variational principle. To reduce the obtained systems to one-dimensional, the methods of
straight lines for the stress-strain state problem and decomposition into double trigonometric series
with approximation of stress components and displacements in the direction of the source using
the procedure of the Bubnov-Galyorkin method and taking into account the periodicity of the
solving functions in the circular direction for the stability problem were used. The solution of the
obtained one-dimensional systems in the direction normal to the middle surface of the shell was
carried out using the numerical method of discrete orthogonalization. The proposed approach
makes it possible to solve problems of stability of cylindrical shells at different angles of
reinforcement of the construction material relative to the structure.

The problem of stability of a non-thin composite anisotropic shell against end torsional loads
is solved, depending on the number of layers and the angles of rotation of their main directions
of elasticity, according to the proposed approach and using the orthotropic model for the
calculation of anisotropic shells. A comparison of the obtained results was carried out and a
conclusion was drawn about the use of the proposed approach.
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Cmamms naoditiuna 16.10.2023

Tpau B.M., IloosopHuii A.B.
CTIMKICTh HETOHKHUX HWJITHAPUYHUAX AHI3OTPOITHUX OBOJIOHOK ITIJI JIEI0 KPYYEHHS B
TPUBAMIPHINA IOCTAHOBIII

B crarti y mnpocTopoBiii MOCTAaHOBII MNPHUBEJEHO PO3PaXyHOK HAa CTIHKICTh HETOHKMX UMIIHIPUYHUX
aHI30TPONHUX MIapYBaTHX KOMIO3MTHUX OOOJOHOK MiJ Ji€f0 TOPHEBMX KPYTHUX MOMEHTIB. AHi30TpoIIis
BHKOPHCTOBYBAHOTO MaTepialy XapaKTepH3y€eThCs OJHI€IO TUIOMIMHOIO NPYKHOI CHMeETpii foro xapakrepucTuk. Lle
BHUKJIMKAHO HE CITiBIIa/IIHHSAM I'OJIOBHUX HANPSAMKIB MPY>KHOCTI BOJIOKHUCTOT'O KOMIIO3UTHOTO OPTOTPOITHOTO MaTepiairy
Ta OCSMU KPHBOJIHIHHOT IMITIHAPHIHOT CHCTEMH KOOPAMHAT.

TpuBUMipHa HEOJHOpiNHA cHcTeMa AMQEpeHIiaTbHUX PIiBHAHb Y YaCTHHHHUX IIOXiJHHUX, IIO ONHUCY€, B Me¥XKax
NiHIfHOT Teopil NPYXKHOCTI, IOKPUTUYHHUIA HaANpy>KeHO-AeHOPMOBAHMU CTaH BHUBEIEHa MpPU BUKOPHCTaHHI
BapianiifHoro mnpuanMIy Xy-Bacinsy. 3MeHmeHHS pO3MIpHOCTI pO3IIsAAyBaHOI 3ajadi 3 TPUBUMIpHOI 110
OJIHOBMMIpPHOi THPOBOANTRCA TPH YypaxyBaHHI OCbOBOi CHMeTpii nedopMyBaHHS IMITIHAPUIHOI OOOJOHKH Ta
BUKOPUCTAHHSM, Y B3/I0BXK TBIPHOI, METOIy HPSMUX.

Cnwmpatounce Ha MojudikoBaHWil Bapianiiiamii npuaimn Xy-Baciazy, BuBeIE€HO TPHBHMIpHY CHCTEMY
OJIHOPIZHUX AN(EpPeHIiaNbHNX PIBHAHB CTIHKOCTI Y YACTHHHHUX MOXIJHUX B PaAMKaX IPOCTOPOBOT TEOPil MPyKHOCTI.
TIpuBeneHHST TPUBUMIPHOI CHUCTEMH 0 OJJHOBUMIPHOI 3/1iIHCHIOETHCS Y B3JIOBXK TBIPHOI Ta 332 KOJIOBHUM HANPSMKOM -
LUIIXOM PO3KJIaJIeHHS KOMIIOHEHTIB HANPYXKEHb 1 MEpeMillleHb Y MOJBilHI TPUTOHOMETPUYHI PSAM MPU 3aCTOCYBaHHI
npoueypu Metoxy byOHOBa-I"anbopkiHa, a TAKOX 3 ypaxyBaHHAM MEPiOAMIHOCTI PO3B’SI3yI0UHX (PyHKILIH.

Po3pobiieHo anropuT™, sIKMK peasi3oBaHMil y BUIVISAI MakeTiB npukinaanux nporpam it [1K. B Hbomy B €quHOMY
00YMCITIOBAJIBHOMY TIPOIIECI, 32 BHMKOPHCTaHHS YHCEIBHOIO METOMY JAUCKPETHOI OpPTOTOHAMi3aIlii y HampsSMKy
HOPMAJIbHOMY JI0 CEpEAMHHOI MOBEpPXHi OOOIOHKHW, TIOEAHYIOTECS BCTAHOBJIECHHS IapaMeTpiB JOKPHTUYHOTO
HanpyXeHO-Ie(OpPMOBAHOTO CTaHy Ta pO3B’S3KY Ha Iiif OCHOBI 3a/Jad CTIHKOCTI HETOHKHX aHI30TPOIHHX
LUIIHAPUYHUX 000JOHOK, IO 3HAXOAATHCS TMiJ] €10 KPYYECHHS.

PosrisiHyTa 3amada mpo BIUIMB HAa CTIHKICTH aHI30TPONHOI IMITIHAPUYHOI HETOHKOI OOOJIOHKM 301TbIICHHS
KIBKOCTI MEPEXpPECHO-apMOBAHMX IIApiB B 3aJEKHOCTI Bil KyTa MOBOPOTY TOJIOBHUX HANpPSIMIB TNPYXKHOCTI
Matepialdy Ta HamlpsAMKY IpPUKIaJaHHS KPyTHOTO MOMeHTy. IIpoBezieHe CHIBCTAaBICHHS OTPUMAHHX DPe3yJbTATiB
pO3paxyHKiB Ha CTIHKICTh 3TiJJHO 3aIPOIIOHOBAHOTO MiAXOJY i3 KPHTHYHHMH HABaHTaXXCHHAMH KPYYEHHS, IO
BHpaxyBaHi TPHM BHKOPHUCTaHHI OPTOTPOMHOI MOJENi PO3paxyHKy aHi30TpomHmX oOonoHOK. [lokaszawo, mo mms
OJTHOIIAPOBHX IIIIHAPUIHUX 0O0JIOHOK PO3XOKCHHS MiXK IIOPiBHIOBAHUMH Pe3yIbTaTaMH csrae 69%. 301nbpIeH s
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KIUTBKOCTI HEepeXpecHO-apMOBaHHX LIAPIB Be/e O 3MEHIIEHHS Ii€l po30iKHOCTI Ta HPH CEeMU-BOCHMHU IIapax
PI3HHLS MK KPHUTHYHUMH HaBaHTA)XCHHSIMH OTPMMAaHMMH 3a ONHMCAHHM IiJXOJIOM Ta OPTOTPOMHOI MOJEILIIO
3HaXoOAUThcs B Mexax 5%. Takuil pe3yibTaT ILIIKOM y3rOJKYIOTbCS 3 THMH, IO OTPUMAHI IPU BUKOPUCTAaHHI
KJIACHYHHX YH YTOUHEHHUX TEOPill PO3PAaXyHKIB sSIK TOHKUX, TaK 1 HETOHKUX aHI30TPOIMHUX [HIIHAPHIHUX 0OOIOHOK.
Kuaio4doBi ci10Ba: aHi30TpoIHA NIITIHAPHUYHA 000JIOHKA, TPHBUMIPHA IIOCTAHOBKA, CTIIKiCTh IPU KPYUEHHI.

Trach V.M., Podvornyi A.V.
STABILITY OF CYLINDRICAL ANISOTROPIC COMPOSITE SHELLS UNDER TORSION IN A THREE-
DIMENSIONAL FORMULATION

The article presents a calculation of the stability of non-thin cylindrical anisotropic layered shells under the action of
end torsional moments in a spatial formulation. The anisotropy of the used material is characterized by one plane of
elastic symmetry of characteristics. This is caused by the mismatch between the main elastic directions of the composite
fibrous orthotropic material and the axes of the curvilinear cylindrical coordinate system.

A three-dimensional inhomogeneous system of partial differential equations describing the subcritical stress-strain
state within the linear theory of elasticity is derived using the Hu-Washizu variational principle. Reducing the
dimension of the problem under consideration from three-dimensional to one-dimensional is carried out by taking into
account the axial symmetry of the deformation of the cylindrical shell and using the method of straight lines along the
generatrix.

Based on the modified Hu-Washizu variational principle, a three-dimensional system of homogeneous partial
differential stability equations is derived within the framework of the spatial theory of elasticity. The reduction of a
three-dimensional system to a one-dimensional one is carried out along the generatrix and in the circular direction - by
expanding the components of stresses and displacements into double trigonometric series when applying the procedure
of the Bubnov-Galorkin method, as well as taking into account the periodicity of the resolving functions.

An algorithm has been developed, implemented in the form of application software packages for PCs. In it, in a
single computational process using the numerical method of discrete orthogonalization in the direction normal to the
middle surface of the shell, the establishment of the parameters of the subcritical stress-strain state and the solution on
this basis of stability problems for non-thin anisotropic cylindrical shells under the influence of torsion are combined.

The problem of the influence on the stability of an anisotropic cylindrical non-thin shell of an increase in the number
of cross-reinforced layers depending on the angle of rotation of the main directions of elasticity of the material and the
direction of application of torque is considered. The obtained results of stability calculations according to the proposed
approach were compared with critical torsion loads calculated using an orthotropic model for calculating anisotropic
shells. It is shown that for single-layer cylindrical shells the difference between the compared results reaches 69%. An
increase in the number of cross-reinforced layers leads to a decrease in this discrepancy, and with seven to eight layers,
the difference between the critical loads obtained using the described approach and the orthotropic model is within 5%.
This result is consistent with those obtained using classical or refined theories of calculations of both thin and non-thin
anisotropic cylindrical shells.

Key words: anisotropic cylindrical shell, three-dimensional setting, torsional stability.
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Tpau B.M., Iloosopnuii A.B. CTiiikicTh HeTOHKHX INHJIIHAPHYHHUX aHI30TPONMHHX 000JIOHOK Wil Ai€I0 KPyYeHHS B
TpuBUMipHiii mocranoBui // Omip marepianis i Teopist cnopya: Hayk.-tex. 30ipH. — K.: KHYBA, 2023. — Bum. 111. —
C. 74-86.

Posenadaemobca po3paxyHok HemoHKUX YUNTHOPUYHUX QHI30MPONHUX WApyeamux 00010HOK ni0 Oi€l0 Mmopyeeux
CKpYYyIouux MOMEHmMi8 y npocmopogili nocmanosyi. Posensdyeana anizomponis Xapakmepuszycmvcs O00HIEI0
NAOWUHOIO NPYICHUX XAPAKMEPUCMUK Mamepiany. J[ia OmpumManus mpusumMipHux cucmem pieHAHb OOKPUMUUHOT
pisnogazu ma cmiiikocmi npoCmopogoi meopii NPyHCHOCHI, GUKOPUCIAHO MOOUPIKAYiI0 8apiayitino20 NPUHYUNY
Xy-Baciozy. Hucemvnuii po36’sa30x nocmasnenoi 3a0ayi nposooumvcs npu euxopucmanui memooie bybnosa-
Tanvopkina, ouckpemuux nepemeoperv Dyp’e ma Oouckpemuoi opmozonanisayii. Pozenanyma 3adaua cmivukocmi
AHI30MpONHOT YUNIHOPUUHOI HeMOHKOI 000NOHKU Npu 30iNbUeHHI KilbKOCMI NepexpecHo-apMOBAHUX Wapie 6
3anexcnocmi 6i0 Kyma RNOGOPOMY 20JO6HUX HANPAMIE NPYJICHOCMI Mamepiany ma HANPAMKY NPUKIAOAHH
CKPYUYI04020 MOMEHNIY.
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Trach V.M., Podvornyi A.V. Stability of cylindrical anisotropic composite shells under torsion in a three-
dimensional formulation // Strength of Materials and Theory of Structures: Scientific-and-technical collected articles.
— Kyiv: KNUBA, 2023. — Issue 111. — P. 74-86.

The calculation of cylindrical anisotropic layered composite shells under the action of end torques in a spatial
setting is considered. The considered anisotropy is characterized by one plane of the material's elastic
characteristics. To derive three-dimensional systems of equations of subcritical equilibrium and stability of the
spatial theory of elasticity, a modification of the Hu-Washizu variational principle was used. Solving the problems
of the pre-critical stress-strain state and stability is carried out using the Bubnov-Galyorkin methods, discrete
Fourier transforms and numerical discrete orthogonalization. The problem of stability of an anisotropic cylindrical
thick-walled shell with an increase in the number of cross-reinforced layers is considered, depending on the angle
of rotation of the main directions of elasticity of the material and the direction of torque application.

Tabl. -. Fig. 2. Ref. 17
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