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This paper considers the first stage of calculating the initial boundary value problem of non-stationary thermal conductivity
of cylindrical bodies using a modified method of lines, namely dimension reduction of the original differential equations, initial
and boundary conditions. The original equations of thermal conductivity are defined in a cylindrical coordinate system in a
spatial setting. An object is a cylindrical body with commensurate dimensions. This area of research is relevant, because when
calculating the load bearing elements of structures to thermal effects, the first step is to determine the distribution of temperature
fields. Boundary conditions are considered as conditions of convective heat transfer, which by means of boundary transition are
transformed into boundary conditions of the first and second types.
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One of the important computational models of rotating bodies under the action of forceful,
kinematic and thermal influences is a non-thin annular plate. Before calculating the annular plate for
thermal effects, the distribution of the thermal field over the volume of the plate is determined
(calculation of the thermal conductivity problem). The calculated functions are considered in the
cylindrical coordinate system and depend on three spatial variables and a time variable (Fig. 1).
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Fig. 1 Annular plate

The original equations of thermal conductivity in the cylindrical coordinate system are considered
as a system of differential equations of the first order:
Fourier's Law:

oT 1 oT or
== — == —— ==, —. 1
q, P qs T30 q. P (1)
Heat balance equation:
of ¢, 9dq, 1 9dq, Jq

P T o v e e @

© Sovych Y.V., Levkivskyi D.V., Yansons M.O., Koshevyi O.P., Poshyvach D.V.



186 ISSN 2410-2547
Onip matepiaiis i Teopist ciopy/Strength of Materials and Theory of Structures. 2024. Ne 112

or in the form of a second-order differential equation in spatial coordinates:

pc 0T T 10T 1 o’T 0T
_._:—2+—-—+—2-—2+—2. (3)
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In connection with the further application of the method of lines, the variable r is replaced by x,
taking into account the ratio:

r=R,+x. 4)
Due to the fact that (4) is a linear relation, the derivatives are equal:
o 0
o 5
ox or ©®)
Therefore, equations (1), (2) are transformed into:
oT 1 or or
=—A — =-A.- — =-A.-— — Fourier's Law, 6
e P " R,+x 00 e: "oz ©

0 0 0
o -4 % L % s O, - heat balance equation. (7
ot R,+x oOx R,+x 00 0Oz
The used replacement of r — x variables allows to expand the capabilities of the algorithm.

Equations (6), (7) for R, — oo are transformed into the equations of the plane problem of thermal

pc

conductivity in the Cartesian coordinate system (x,z).

The Modern numerical-analytical methods are used to construct approximate solutions of
multidimensional problems using dimensionality reduction of the original calculation equations.

To set the initial problem, it is necessary to add the boundary and initial conditions to the original
equations, which must satisfy the calculated functions.

On the boundary surfaces of the object, the calculation functions T'(x, 8, z, f) on spatial coordinates
(on the z=0, z=h, and x=0, x=L surfaces) are considered as conditions of convective heat
exchange with the surrounding environment. It is considered that 7'(x,6,z,¢) depends on variables as
on parameters.

When x=0:
q,(0,0,2,t)=¢q° (z,)-a’[T(0, z,t)- 0’ (0,z,1)], (8)
Whenx=1"L:
q,(L,0,z,0)=q"(0,24)— " [T(L,0,z,0) -0 (0, z,1)]; )
When z=0:
¢’ (x,0,t) =—a [T (x,0,h™,t) =6, (x,0,1)], (10)
When z=h:
q..(x,0,h" 1) =q.(x,0,h,t) +a" [T(x,0,h,t)- 0] (x,0,1)]. (11)
With respect to variable 6, the calculated functions must satisfy the periodicity conditions, that is:
TO+2n)=T(0). (12)
On the time variable, the temperature function must satisfy the initial condition, that is:
7(x,0,2,0)=T,(x,0,z), (13)

where 7;(x,0,z) is the known temperature distribution function over all points of the body volume.

When the dimensionality of the original equations is reduced by two spatial variables (by z and 6.
), the reduced equations, boundary and initial conditions define a one-dimensional function. This
function also depends on the time coordinate. For this type of problem, numerical methods of
mathematical physics have developed effective numerical algorithms that are easily adapted to reduced
problems.

To reduce dimensionality, a modified method of lines, developed by the authors of this paper [5],
[6], is used.

Parallel straight lines with a constant step are applied to the area of the body being examined.
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In this case, these are lines parallel to the 0y - axis.

Each such line corresponds to piecewise linear locally concentrated basis functions [1], which
depend on the z - coordinate. Any calculated function is a linear combination of basis functions and
depends on other variables as parameters:

T(x,0,z,6) =T (x,0,1)-¢,(2) . (14)
For repeating indices, summation is assumed within the index values (Einstein matching).
The system of basis functions ¢,(z) forms a linear space, the basis of which it is. On the elements
of this linear space we determine the scalar product:

(f(2).8(2) = _[f(Z),g(Z)dZ : (15)

The system of functions (Fig. 2) allows you to calculate the scalar products of any pair of basis
functions according to "Vereshchagin's Rule".
The system of basis functions is "almost orthogonal".

z
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Fig. 2
Tensor calculus, which extends to multidimensional Euclidean spaces, has been developed for

calculations of vector operations with oblique bases [2].
For further use of tensor operations, a "reciprocal basis" is used next to the selected "main basis"

0.(2),i=1,N. .
The "reciprocal basis" is built on the main basis [1;] using the components of the metric tensor:
9'(2)=2"9,(2), (16)
where g’ is the twice contravariant metric tensor g” =(¢'(z),¢’(z)), calculated from the matrix

components of the doubly covariant tensor g, =(¢,(2),¢,(z)) by the formula:

g} =1g;}" (17
A function that depends on a variable z , can be written as a expansion on a main basis:
f@=7-0(2) (18)
or in the form of expansion on a reciprocal basis:
f@) =19 (19)

The coefficients f’ and f, in expansions (19) and (20) found by scalar multiplication by elements

i

of the basic or reciprocal basis:
[ =(/(2.¢'(2); f;=(f(2),0,(2)). (20)
f* - coefficients in the distribution according to the main base, f,- moments relative to the main

base.

In problems of the mechanics of axisymmetric bodies in a cylindrical coordinate system, the symmetry
of influences is taken into account. This leads to a significant simplification of the problems.

With axisymmetric external influences, the thermal and mechanical states of the annular plate are
axisymmetric. This simplifies the problem and calculation equations. The reduced equations are reduced
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to one-dimensional coordinates for which explicit or implicit difference schemes are used. If the
temperature function is not axisymmetric, the problem becomes more complicated.

The Bubnov-Galyorkin-Petrov projection method with the basis functions selected above is used to
reduce the dimensionality of the original equations using a modified method of lines [1].

Natural boundary conditions (8) - (11) are used as boundary conditions for variable z, then the
basic functions may not satisfy the boundary conditions.

To obtain the reduced equations in the coefficients of z (corresponding coefficients in moments

relative to z ), all equations are multiplied scalar by ¢'(z).
Calculated functions depend on four variables - x,60,z,¢, and the scalar product is related to
integration over z, other variables of x,60,¢ donot depend on z and are considered parameters, so the

functions of these variables and their derivatives are carried out for the signs of integrals over z.
Accordingly, we obtain:

or. : oT" (x,0,t
((qx :_)L’T )s(p (Z))_)qz(xsest):_lr ( ) 5 (21)
Ox ox
or. | A —h, 0T (x,0.1)
= _2' - ") ' e . ,H,t = : ) 22
(g5 " Rotx 69) 9'(2)) = gy(x,0,1) Rotx 20 (22)

oT. A Lor .
(¢ =~ S0/ (2) = 4. (100 =2, [ g ¢, ()i =
Z ) 0z

h

i J a a ij b ij a
==A-g" E(T (x,0,0)-9,(2) ¢, (z)==2,-T 'g’-J(P;(Z)-(PQ,(Z)dZ=—lT~g’°b,~aT-
0

0
Here, the index-dropping operation is used (pf(z):gij-(pj(z), transformation function

h
T(x,z,0,t)=T"(x,0,t)-¢,(z); and the supporting matrix I(Df (2)- 9. (2)dz =b,, .
0

The final result is:
q.(x,0,0) == -g" b, T". (23)

The main problem of applying the projection method to the solution of operator equations is the
convergence and stability of the method during numerical implementation.

A large number of works are devoted to the question of the convergence of the projection method.
Fundamental results were obtained by N.I. Polsky, S.G. Mikhlin, M.M Vinnik, M.A Krasnosel'skii,
G.M. Vainikko, P.P. Zabreiko, Y.B. Rutitsky and others. A necessary condition for convergence is that
the system of basis functions belongs to the energy space of the operator and its completeness in space.

Since in our approach the boundary conditions on the lateral surfaces are natural, the energy space
of the operators consists of functions that may not satisfy the boundary conditions.

The general convergence theorems of the projection method in practical calculations establish the
fact of convergence, but the assessment of the speed of convergence is more important. Construction
of such estimates is not possible, therefore, the fact of convergence and its speed are investigated in the
paper based on numerical experiments. This approach corresponds to the level of mathematical
research adopted in structural mechanics.

As numerical experiments show, the reduction of dimensionality increases the level of rigidity of the
reduced equations, which in some cases leads to the loss of stability of numerical methods.

But nowadays, numerical methods have been built that ensure the stability of numerical algorithms
in solving Cauchy problems, boundary problems, etc. This must be taken into account when adapting
existing numerical methods to the solution of reduced equations.

oT 9. 99, 1 dq, 9q

((PC'§=—E—¥—E'£— % +0,),9'(2)) -

AT (x,6,0) _q,(x,0,0) 9q,(x.0,) 1 0gy(x.6,1) 9q. ,~
==r r _Z’ ’0’ ) 24
ot Ry+x &  R+x 26 (G 9 (2D+0; (x.00) (24)
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The penultimate component is considered separately:

aqz i f aqz i h aqz ii i h aqz
(Z2,0(2) = j 9 () = j — g od=g j 0 25)

Oz

Since the function ¢, is differentiated once, it is not possible to make a substitution of the schedule

by base functions for it.
It is preliminarily recommended to "soften" the integration by means of integration by parts [1]. The
necessary transformations look like:
u=0@.(z); du=q@’(z)dz
g g, ) ®,(2) ¥(2)
-89 (2)dz=g" 9, (2)dz =g |y 4 =

0 oz Iz —=dz; v=gq,

0 oz

h h
h - "
=(q.-9,))|, - [4. 9)(2z=g"(¢." -8 —q." - 5)- " [ 47 9. (2)- 9} (2)dz =
0 0

iN.

h
=g ,qu, _gilz _qZI, _gf/' 'qu(Pa(Z)'q?;(Z)dz — ng, 'quZ _gi1, .qzl, _gij 'baj qa
0

h
Here is marked b, = I¢a (z)(p]/. (2)dz. The final result is:
0

h
a ij i i ij a
I%-g’ p,(2)dz=g" ¢ —g" ¢ ~g" b, 4" (26)
0
The reduced equation of thermal equilibrium with respect to z has the form:
pc ' (x,0,0) _ _4,(x,0,) 09g,(x0.0) 1  ¢p(x.0.0)

ot R,+x ox R,+x 06
+g" b, qf—g™-q." +g" ¢  + 0. 27)
Excluding the components of the heat flow vector ¢ (x,0,z) and ¢'(x,0,z) from the reduced

thermal equilibrium equations (27) with the help of the Fourier law equations (21), (22), (23), we
obtain the equations relative to the temperature function:

oT'(x,0) 1 3T'(x,6,1) N 9°T' (x,6,t) N 9°T' (x,6,t) N
ot R, +x ox ox’ 06’
+0,(x,0,0)—g" b, -g" b, T, (28)

where 0.(x,0,)=0.(x,0,0)— g™ -¢"™ + g" - ¢’ .

Of particular interest in the problems of thermoelasticity of axisymmetric bodies are non-
axisymmetric thermal influences. Under such influences, the thermal field and the stress-strain state
are non-axisymmetric, that is, more difficult to research. In structural mechanics, for objects that have
some variant of symmetry, a method of taking into account symmetry has been developed - an
arbitrary load is considered as the sum of symmetrical and inversely symmetrical loading.

For an axisymmetric object with asymmetric load, the load is considered as the sum of three
options: axisymmetric component (relative to the axis 0z ); locally symmetric component and locally
skew-symmetric component. These components are described by mathematical methods. Thus, the
axisymmetric component for the heat conduction equations is described by equations (27), which do
not depend on the variable 6 :

oT' (x,1) 1 .aTi(x,t) N 0T (x,1) B
ot R,+x  oOx ox’

The locally symmetric component of the load is described by a segment of the Fourier series with
respect to variable 6 (cosine series expansions). Local skew-symmetric component - sine series
expansions. In all the cases mentioned above, in this work, a method is constructed to simplify the initial
problem by dimension reduction with respect to one more spatial coordinate - 6. An option is where the

Ap-g by TP (x0). (29)
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external thermal influences are not axisymmetric and can then be written as a Fourier series with respect
to the vertical axis, which includes the axisymmetric part of the influence, the cosine expansion, and the
sine expansion. Three problems are considered - axisymmetric problem, calculation on cosine influence

and calculation on sinusoidal influence. The computational equation in the last two cases includes an

62
operator
00’

, that acts on functions that satisfy the boundary conditions of periodicity. It is not very

convenient to apply the Fourier series method here, because it is necessary to reduce the computational
equations to homogeneous equations. Therefore, it is convenient to reduce the dimensionality with
respect to another spatial variable - 6 by means of a finite integral transform [3], [4], using the
eigenfunctions of the differential operator of the boundary value problem with respect to variable 6 . The
role of integral transform in solving problems of mathematical physics is very large. They are used as the
main tool for obtaining analytical solutions of evolutionary and stationary equations defined in bounded
and unbounded domain. Thus, in all cases, the original equation is scalarly multiplied by the transform
kernel, and then integrated over the domain of this equation. To transform the integral relations obtained,
integration by parts is used, while components outside the integral sign are excluded using the initial and
boundary conditions. Each of the methods using integral transform differs from the others in the domain
of changing the functions on which the transformation is defined and in the kind of kernel. The
operational method, based on the application of the Laplace transform [1], is chronologically the first of
all the methods considered. It is used to convert differential equations by time to algebraic relations and
therefore applies to equations defined in a semi-infinite interval. The main achievements of the
operational method - a large table of correspondences between the originals and mappings. After solved,
it's easy to go back to the originals. It should be noted that the operating method is successfully used in
the spatial coordinates defined on a semi-infinite interval. However, in spatial coordinates, the Fourier
transform (on a semi-infinite interval) is often used to transform equations. For the transformation of
differential equations defined on finite domains, the so-called finite integral transforms are used [4], [3].

Formally, the finite integral transform method is similar to the projection method. But from the
point of view of modern mathematics there is a significant difference between them, which consists in
the application in the finite integral transform eigenfunction method of the operator of the boundary
value problem under consideration. In this regard, the Finite integral transform method uses the
appropriate terminology, for example - "original" and "image", which is accepted in all integral
transforms for equations written in a cylindrical coordinate system and many others. To transform
equations defined on finite domains, finite integral transforms are applied. The finite integral transform
method [1] appeared for two reasons. First, it was necessary to give a standard form to the transforms
that accompany the solution of differential equations in spatial coordinates by the eigenfunction
method. The specific properties of the eigenfunctions of self-adjoint operators of mathematical
physics, especially their orthogonality, allow us to extend the ideas of the operational method to
boundary value problems. The second reason is the desire to free the use of eigenfunctions from the
complications associated with the heterogeneity of boundary conditions. In the eigenfunction method,
the boundary conditions must be reduced to homogeneous ones. For this purpose, an auxiliary
particular solution is found that satisfies the initial boundary conditions. It's not always easy to do. The
finite integral transform method does not require this complication. Here, the inhomogeneity in the
boundary conditions is taken into account in the components outside the integral sign of the
transformed equations. As shown by G. A. Greenberg [4], this approach in the general case is not
equivalent to that adopted in the eigenfunction method, but lead to satisfactory results. This is the main
generalization in comparison with the eigenfunction method.

Integral transform methods are extensively used in the mechanics of deformable solids, and recently
in structural mechanics.

The application of the integral transform method includes several main stages - the transition to
mappings, finding the solution of the transformed equation and the transition to the original one, found
at the second stage of the solution mapping. As a rule, at the first stage no difficulties arise. If the
transformation is applied with respect to a part of the coordinates, then at the second stage it is
necessary to solve differential equations, albeit of a lower dimension. But the main complications arise
when finding the original solution. Such a problem does not exist in the finite integral transformation
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method, because here the finding of the original is reduced to the summation of series by the
eigenfunctions of the operator of the boundary value problem, which is not a problem when applying
numerical methods. True, a complication may arise here due to the slow convergence of the series, but
in our time such complications are not significant. It should be noted that the procedure and properties
of the finite integral transformation method are closely related to the procedure of the projection
method. The essential difference is the fact that in the finite integral transformation method the
eigenfunctions of the corresponding operator of the boundary value problem are used as basic
functions, while in the projection method - the system of functions that is complete in the

corresponding energy space. The eigenfunctions of the boundary value problem defined by the
2

differential expression and the boundary conditions of periodicity are a pair of functions sin6,

62
cosf; sin26, cos26; sin36, cos30;...sinnb, cosnf, where each pair corresponds to one eigenvalue -
n’ [3]. These are functions of the Fourier series with respect to variable 6. This system of functions is

orthogonal and must be normalized, namely considered in the form Lsiné? Lcos 0; Lsin 20,

NN Y

——c0s260; —sin30, ——cos30,..

1
Jostts Jindt, -

Two variants of finite-dimensional integral transforms are used - finite-dimensional integral
transforms with basis functions

sin 9, | sin 20, sin 30, | sinm, ... LsinMG, (30)

1
e, om0, sindf,.. psinnd, ...

which is called sine transform; and the second finite integral transform with basic functions

cos0, | c0s 20, cos 30, | cosnb, ... LcosNG, 31

1
7St st Jreestd. ... prcosnd .

which is called the cosine transform.

In specific calculations, the numbers M and N are selected so as to ensure the required accuracy
of calculations.

Inverse transform (transition to original)

- for sine transform

T'(6)= 2;’"(0)%sin mb; (32)

- for cosine transform

ZT cos né. (33)

n=1
Since the orthonormal basis of functions is used here, the reciprocal basis coincides with the basic
basis and the difference between covariant and contravariant components disappears, so here the index
m (or n) is located above the corresponding parts of an expression. The indices n and m vary from 1
to oo, but in practice the finite number of members of the series are used, ie the index m varies from
1 to M, and the index n - from 1 to N to specify the calculation. To move to the mappings with
respect to variable 6, the original equation (3) in the second-order derivatives is scalarly multiplied by

Lsin m0O - the transform kernel for finite integral sine transform and separately by Lcos n0 - the
NA A

transform kernel for the cosine transform. Since most of the components of equation (3) have no

derivatives with respect to 6, their sine and cosine transforms are determined by scalar multiplication
2

by ——sinn0 and by ——cosm6 correspondingly (without the operator 6662 ). Resulting in:

JE J;
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T T 1aT 32 m
pe EERads (34)

=4 —
A, ot o r ar
aT >T 1aT a2 n
% o e T T (33)
T v r I”

It should be noted that these transforms primarily concern given influences, which include
volumetric influences O, and influences on boundary surfaces marked with a hyphen, while the index

n means sine transform of external influences, and m - cosine transformation.
. . . o’ . . .
The transformation of the differential operator P and the corresponding part of equation (3) is
z

performed separately (including only that part of the equation that changes significantly in this case):

T 1
, o 0d6o.
(862 \/_smm] J‘\/_smm

To transform the integral, the integration by parts is used twice (taking into account the second

derivative):
2r
dv:i G_T d9;v:a—T =u-v| =0
of(or 1 . 00\ 00 06 0
9 %TSIH mldo || = : ) . ar
7 U =—=sinm0; du = ——=m-cosmb. v-du=—-mcosmo.
T T 0
The component outside the sign of the integral is zero. The conditions of periodicity are fulfilled:
g p dv= g—gde v=T,
.[ - COS: 6= m m ) sinm m (36)
0 1 =——cosm0, du =——sinmfd@=0- | m* =-m’T
Jr Jr ! Jrd6
Similarly, » is obtained:
T 1
,——cosnf n’T. 37
(802 \/— n ] (37)

Taking into account the dimension reduction with respect to z, the reduced equations in the form of
systems of equations of the second order in the spatial coordinate are obtained:

pe Tt 1T BT T T g"" A
. - . — b.-g”.b .- T _ = 38
L ot R+x ox ac  (Rxy 8 U8 P [‘Iz g.] 2 (38)
pe AT AT T m gm N g

+ - n - bhooogp TP _ +_ 39
A o Rotx ox  or  (Rrxy |8 & Dw o q] (39)

T

Conclusions. The modified method of lines in combination with expans1on on the circular
coordinate into Fourier series allows the subsequent application of the method of discrete
orthogonalization for the numerical solution of the given problems of thermoelasticity. The flexibility
of the approach lies in the possibility of modeling any arbitrary boundary conditions. A convenient
index form of writing reduced equations creates comfortable conditions for further programming in the
FORTRAN and C++ algorithmic languages. At the stage of forming the reduced equations, it is
possible to choose a coordinate of increased accuracy z or r, depending on the problem and the
geometry of the studied objects.
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Cosuu FO.B., Jleskiscvkuii JI.B., Anconc M.O., Kowesuii O.11., [Towusau JI.B.
YUCEJbHO-AHAJTITHYHUAN MIIXIT 10 PO3B SI3AHHSA 3AJAY HECTAIIIOHAPHOI TEMJIOMPOBITHOCTI
HETOHKOI KIJIBIIEBOI IJIACTUHH

VY naniii poOOTI pO3MIISHYTO MEPIINH eTan po3paxyHKy I10YaTKOBO-I'PAHUYHOI 33/1a4i HECTALiOHAPHOT TEIIONPOBIAHOCTI Tij
wwriHapuyHoi  GopMu 32 JOMOMOror MoAM(IKOBAHOIO METONY NpPSAMHMX, a caMe 3HW)KEHHS BHUMIPHOCTI BHUXIIHHX
JnudepeHLiaIbHUX PIBHAHb, TOYaTKOBUX Ta TPAHMYHUX YMOB. BUXifHI PIBHAHHA TEIUIONPOBIIHOCTI BU3HAYCHI B LIMIIHAPUYHIN
CHCTeMi KOOPJMHAT B IIPOCTOPOBiH MOCTAHOBLI. Y SKOCTI 00’€KTa PO3IIAAAETHCS ILMIHAPUYHE TIIO i3 CIIBPO3MipHUMHU
rabapuTHUMH po3MipaMu. JlaHuil HampsAM JOCHI/DKEHb € aKTyalbHUM, OCKIJIBKM HpPH pPO3PaxyHKy HECYy4HMX eJIEeMEHTIB
KOHCTPYKIIIi Ha TEIUIOBI BIUIMBH, NEPIIMM €TAlOM € BU3HAYCHHA PO3MOAUTYy TEMIEpAaTYpHUX IOIIB. ['paHM4YHI YMOBH
PO3TIIANAIOTECS SIK YMOBM KOHBEKTHBHOTO TEIJIOOOMiHY, SIKi 3a JOMOMOrOI0 TPaHMYHOrO MEPEXOAY IEPEeTBOPIOIOTHCS Ha
IPaHNUYHI YMOBH IEPIIOrO Ta JPYroro THIIB.

3HMKEHHS BUMIPHOCTI 110 MPOCTOPOBiH KOOPAMHATI z BUKOHYEThCS MpoeKLiiiHuM MeronoMm byoHnoBa-T"anbopkina-IlerpoBa
3a JIONOMOTOI0 JIOKaJIbHUX Oa3ucHuX (yHkuii. [Jani ¢yHKuii Ha3UBalOTh (QYHKLIi-«KPUIIKK», SIKI TOB’A3aHI 3 NPAMHUMH, 110
HaHeceHI Ha o00JacTh BM3HAYEHHS IIOCTaBJIEHOI 3ajxadi. Jlad 3HMKEHHS BHMMIPHOCTI pPIBHSAHb 110 KOJIOBiM KOOpIMHATI
BUKOPUCTOBYIOTBCSI HOPMOBAHI TPUTOHOMETPUYHI psau. Bci mnepeTBOpeHHS BHUKOHYIOTbCA B iHAEKCHiH ¢opmi. Kpim
nudepeHLiaIbHUX PIBHAHb, MPOEKLIHUM METOJOM BHKOHYETbCS 3HM)KCHHI BUMIPHOCTI IOYAaTKOBHX Ta TPAaHUYHUX YMOB. Y
JlaHii po0OTI BU3HAYEHO HAWOLIBLI ONTUMANbHY (POPMY 3alMCYy PEAYKOBAHUX PIBHSAHbB, WO 3a0e3redye JICTKICTh 3HUIKEHHS
BUMIpHOCTI BMXiIHUX AudepeHIiadbHuX piBHAHb. [lo4aTKOBI Ta TIpaHMYHI YMOBM BPAaXOBYIOTh BIUIMB HABKOJMIIHBOTO
cepenoBuia. Bee 1e nae MOXIMBICTH MOCTaBUTH PEAYKOBAaHY MOYaTKOBO-IPAHMYHY 3a[ady Ul MOJAJBIIOTO PO3PAXYHKY
YHCEIbHUMH CKiHYEHHO-Pi3HUIIEBUMH METOJJAMH.

Kro4oBi cjioBa: TenonpoBifHICTh, KOHBEKTUBHUH TEMIO00MIH, 3HMKXEHHS BUMIPHOCTI, MOAM(DIKOBAaHUN METOJ NMPSIMHUX,
MPOEKIIMHIH METOJI, peTyKOBaHi PiBHAHHSA, TPUTOHOMETPUYHI ps/iU, Oa3uCHI YHKIII.

Sovych Y.V., Levkivskyi D.V., Yansons M.O., Koshevyi O.P., Poshyvach D.V.
NUMERICAL-ANALYTICAL APPROACH TO SOLVING PROBLEMS OF NON-STATIONARY THERMAL
CONDUCTIVITY OF A NON-THIN ANNULAR PLATE

This paper considers the first stage of calculating the initial boundary value problem of non-stationary thermal conductivity
of cylindrical bodies using a modified method of lines, namely dimension reduction of the original differential equations, initial
and boundary conditions. The original equations of thermal conductivity are defined in a cylindrical coordinate system in a
spatial setting. An object is a cylindrical body with commensurate dimensions. This area of research is relevant, because when
calculating the load bearing elements of structures to thermal effects, the first step is to determine the distribution of temperature
fields. Boundary conditions are considered as conditions of convective heat transfer, which by means of boundary transition are
transformed into boundary conditions of the first and second types.

Dimension reduction with respect to spatial coordinate z is performed by the Bubnov-Galorkin-Petrov projection method
using local basis functions. These functions are called "cover" functions, which are related to the lines drawn on the domain of
the task. Normalized trigonometric series are used to reduce the dimensionality of the equations with respect to circular
coordinate. All transformations are performed in index form. In addition to differential equations, the projection method reduces
the dimensionality of the initial and boundary conditions. In this paper, the most optimal form of writing reduced equations is
determined, which provides the ease of reducing the dimensionality of the original differential equations. Initial and boundary
conditions take into account the impact of the environment. All this makes it possible to set a reduced initial boundary value
problem for further calculation by numerical finite difference methods.

Keywords: thermal conductivity, convective heat transfer, dimension reduction, modified method of lines, projection
method, reduced equations, trigonometric series, basic functions.
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YV pobomi posensnymo 3acmocysanms Mooupikoeanoco memooy npAMUX O 3HUMHCEHHS BUMIDHOCMI OughepeHyianbHUX PiGHAHYL
HecmayionapHoi menionposioHocmi Y  YUNIHOPUYHIL cucmemi KOOpOUHAMm. 3HUNCEHHA SUMIPHOCMI BUXIOHUX PIGHAHb
BUKOHYEMbCA 34 00NOMO20I0 NPOEKYilino20 Memody no koopounami z. J[ia ybo2o GUKOPUCMOGYIOMbCA NOKANbHI OA3UCHI
@ynxyii. PedykosaHi pi6HAHHA OO0NOGHIOIOMbCA PEOYKOBAHUMU NOYAMKOSUMU mMa 2paHudnumu ymosamu. Ilo Kkonosiil
KOOPOUHAMI 3HUICEHHSA GUMIDHOCTMI GUKOHYEMbCA 34 00ONOMO2010 HOPMOBAHUX MPUOHOMEMPUUHUX pAdIe. Y pesynbmami
OMpuUMaHo pedykosaHi oughepenyianbri pieHAHHSA, NOYAMKOS] MA SPAHUYHI YMOBU, WO 3aledcamb 6i0 padiaibHoi ma 4acogoi
Koopounamu. Jawni  pieuAHHA ~ ni020mMOGNeHi 0N NOOANbUIO20 — PO3PAXYHKY — CKIHYEHHO-DISHUYEBUMU — YUCETbHUMU
Memooamu.po36 a3Kie pedyko8ani piGHAHHA 00NOGHIOMbC NOYAMKOGUMU A SPAHUYHUMU YMOBAMU.

In. 2. bi6nior. 10 Ha3B.

UDC 539.3

Sovych Y.V., Levkivskyi D.V., Yansons M.O., Koshevyi O.P., Poshyvach D.V. Numerical-analytical approach to solving
problems of non-stationary thermal conductivity of a non-thin annular plate // Strength of Materials and Theory of
Structures: Scientific-and-technical collected articles — Kyiv: KNUBA, 2024. — Issue 112. — P. 185-194.

In this paper, the application of a modified method of lines for dimension reduction of differential equations of nonstationary
thermal conductivity in a cylindrical coordinate system is considered. Dimension reduction of the original equations is
implemented using the projection method with respect to variable z. Local basic functions are used for this purpose. Reduced
equations are supplemented by reduced initial and boundary conditions. Dimension reduction with respect to circular
coordinate is carried out by means of normalized trigonometric series. As a result, reduced differential equations, initial and
boundary conditions, which depend on the radial and temporal coordinates, are obtained. These equations are prepared for
Sfurther calculation by finite difference numerical methods.
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