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Based on the integral representation of the displacements functions through Green's functions, 
the author proposed a method to solve the system of differential equations of the given problem. 
The equations were solved approximately by reducing to algebraic equations by finite difference 
techniques in Samarsky scheme. Some examples are given for calculation of eigenvalues of 
shallow shell vibration problem, which are compared with results received by Onyashvili using 
Galerkin method. 

 
Introduction 
The stability and vibration problems of shallow shells have been studied by 

many scientists [1], [2]. The usual approaches for those problem were based on 
the partial differential equations of high order with unknown functions being 
displacement w and stress Ø functions. Integrating these equations by 
analytical method usually are too difficult because of the high order of the 
differential equations even if for bending problems [3]. 

On the base of the integral representation of displacement functions through 
Green functions the author has proposed a numerical method for solving the 
differential equations of the problem. These equations were solved 
approximately after producing them into linear algebraic equations by finite 
difference technique. 

Governing equations 
Vlasov governing differential equations for thin shallow shell with variable 

curvatures in the form of the three displacements ),,( wvu  have been employed 
[4,5] 

2 2 2
11 12 13 0( ) ( ) ( ) [(1 ) / ][ ( ) / )] 0L u L v L w Eh X m u t         ; 

2 2 2
21 22 23 0( ) ( ) ( ) [(1 ) / ][ ( / )] 0L u L v L w Eh Y m v t         ; 

2 2 2
31 32 33 0( ) ( ) ( ) [(1 ) / ][ ( / )] 0L u L v L w Eh Z m w t         , 

where 11L , 32L ,…, 33L  – linear differential operator of the shell, h – thickness 
of the shell, 000 ,, ZYX  – harmonic surface loads located on the shell, m  – 
density of the mass for an unit area, E  – Young’s modules, v – Poisson 
coefficient. 
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For convenience in integration and computation, the dimensionless 
Cartesian coordinates are used. In the case of free vibration 0000  ZYX . 

The three displacement it he governing equations are assumed in the form 
   
   
   

, , ,  sin t
, , ,  sin t .

, , ,  sin t

u X Y t u X Y
v X Y t v X Y

w X Y t w X Y

  


  
  

                                  (1.1) 

Substituting the above into the governing equations for free vibration of the 
shells gives 

11 12 13

21 22 23

31 32 33

( ) ( ) ( )
( ) ( ) ( ) .
( ) ( ) ( )

L u L v L w u
L u L v L w v
L u L v L w w

    
    
      

 
 

                             (1.2) 

In the case of elastic stability the governing equations of the shell are 

 
 
   

11 12 13

21 22 23

31 32 33 34

( ) ( ) 0,

( ) ( ) 0,

( ) ( ) ,

L u L v L w
L u L v L w

L u L v L w L w

  
   


      
 
 

                       (1.3) 

where operators in dimensional coordinates are [4,5] 

   2 2 2 2
11 / 1 / 2 / ;L X v Y              2

12 1 / 2 / ;L v X Y         

   2 2 2 2
22 / 1 / 2 /L Y v X          ;  

     13 1 2 12/ 1 / ;L k k X k Y             

     23 2 1 12/ 1 / ;L k k Y k X            

21 12;L L  31 13;L L  32 23;L L   

   2 2 2 2
33 1 1 2 2 12/ 2 2 1 ;L D C k k k k v k         

with 
2

1 2
Zk

X
   

; 
2

2 2
Zk

Y



; 2

12
Zk X Y     

and  ,Z Z X Y  – the middle surface equation of the shell. 
Besides 

2 2 2
34 2 22x xy yL N N NX YX Y

                
 [4,5]; 

 2 21 ;m EH          * 21 ;crEH N        

 3 2/ 12 1D Eh      ;  21 .C Eh       
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Method of analysis 
The method to be presented in based on integral representation of the 

displacement functions through Green functions, by which the governing 
differential equations of the problem are converted into linear algebraic 
equations by using finite difference technique. 

According to this method, the region of the shell is divided into a set of 
orthogonal lines  1,...,mX X m M   and  1,...nY Y n N  . 

The highest derivatives of u, v, w in Eqs (1.2) and (1.3) are denoted by:  
 2 2 , ;u X k X Y      2 2 , ;v X s X Y      4 4 , ;w X p X Y     

 2 2 , ;u Y d X Y      2 2 , ;v Y t X Y      4 4 , .w Y q X Y     
With the help of integrating along the line ,nY Y  Eq. (2.1) can be 

transformed [6] into 

   

   

   

1

0

1

0

1

0

, , , ;

, , , ;

, , , ,

n n

n n

n n

u f X Y k Y d

v e X Y s Y d

w a X Y p Y d


    



    


    


                               (2.2) 

where f , e  and a  are Green functions associated with the (2.1) and the 
boundary conditions correspond to a clamped shell as follows 

0u v w w     at 0X   and 1X  . 
The integral equations (2.2) can be reduced to a summation by using 

Simpson’s rule and for the numerical integration and by using second degree 
interpolation L to relate the functions k, s and p at point  , nY  to those at 
points (X, Yn). Then Eqs (2.2) become 

.
n n n n n n

n n n n n n

n n n n n n

u f aL k F k
v f aL k E k
w f aL k A k

   
   
   

                                 (2.3) 

For all the lines paralleled to the X – axis, Eqs. (2.3) in matrix notation are 
,u Fk  ,v Fk  w AP . 

Similarly, Eqs. (2.1) can be reduced to  
1 *u T HTd H d   , 
1 *v T GTd G d   , 
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1 *w T BTd B d   , 
where * indicates the sequence of the nodal point along the lines paralleled to 
X  – axis ; T – a unitary transformation matrix to rearrange the nodal points in 

the Y –direction to the same order as those in the X –direction. 
The required derivatives of vu,  and w  in Eqs. (1.2) and (1.3) are obtained 

by using the derivatives of Green’s functions and the procedure of the 
differential operators. For u, for example, the derivatives are 

1u F k F F u    ; 
1u HH u ; 

1u k F u    ; 
1u d H u    ;  

1 1u FF HH u  . 
In the similar way, the derivatives for v and w can be obtained. 
Now we consider the shallow shell for which the middle surface equation is 

           2 2 2 22 2 2 2, 1Z X Y c X a a Y b b X a Y b a b          , 

By using the dimensionless variables  2X X a , 2y Y b  we obtain 
the differential operators of the shell as follows 

24 , , , 1,2,3,4.ij ijL a L i j   

      2 2 2 2 2
11 1 2 ;L x v r y         

    2
12 211 2 ;L v r x y L        

      2 2 2 2 2 2
22 1 2L r y v r x       ; 

       2 22
23 4 1 2 1 1 2 1L r c a r x v y y                 

       328 1 2 1 2 1c a r v x y x L        ; 

        2 22
13 4 1 2 1 1 2 1L r c a y vr x x                  

       318 1 2 1 2 1c a r v x y x L        ; 

       2 2 4 4 4 2 2 4 4 4
33 48 2L h a x r x y r y             + 

     
2 22 2 2416 1 2 1 1 2 1c a y r x               
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+         2 2 2 22 22 1 2 1 1 2 1 8 1 2 1 2 1 ;vr y x r v x y               

      2 2 2 2
34 2x cr xy cr y crL N N r N N x y r N N y        ; 

  2 2 24 1 ;a m v Eh        * 21 crv Eh N   ; .r a b  

a. Free vibration problem 
Substitution of the derivatives of u, v and w in Eqs. (1.2) and simplification 

will yield to eigenvalue problem 
  * 0,С I D    

where  

 
11 12 13

21 22 23

31 32 33

L L L
C L L L

L L L

   
     
    

;   *
u

D v
w

 
   
  

; 

 1 2 1
11 (1 ) / 2 ;L F v r H        

       2 22 1
12 4 1 2 1 1 2 1L c a y vr x AA            

     2 18 1 2 1 2 1v r c a x y BB    ; 

   11
21 1 2L v rF F H


   ;   2 1 1

22 1 2L r G v E     ; 

      2 22 1
23 4 1 2 1 1 2 1L r c c r x v y F F                 

      18 1 2 1 2 1c a r v x y AA    ; 

      2 22 1
31 4 1 2 1 1 2 1L c a r x v y GG               

     18 1 2 1 2 1v c a y y E E     ; 

  2 2 1 2 1 4 1
33 48 2L h a A r A A BB r B           

     
22 2 2416 1 2 1 1 2 1c a y r x               

 

        2 2 2 22 22 1 2 1 1 2 1 8 1 2 1 2 1vr y x r v x y               . 
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b. The elastic stability problem 
In the similar way, Eqs. (1.3) can be solved for determining the buckling 

loads. The differential operators L′ij (i,j = 1,2,3) are the same as formulated in 
Eqs. (2.4), and 

     1 1 1 2 1
34 2 .x cr xy cr y crL N N A A r N N A A BB r N N BB         

Substituting L′11 ,…, L′34 into Eqs. (1.3) reduces them to linear algebraic 
equations: 

 * * 0.C I w      

For non-trivial solution of w  
* 0,C I      

where  

   1* 1 1 1 1 11
34 31 11 12 22 21 11 12 21 11 13 23 34 11 13C L L L L L L L L L L L L L L L

                    

     1 11 1 1 1 1
32 23 21 11 12 21 11 12 21 11 13 23 34 33.L L L L L L L L L L L L L L L

                   

Results and discussions 
The free vibration problem was solved for the shallow shell, the middle 

surface equation of which is 

         2 2 2 22 2 2 2 1Z c X a z Y b b X b X b a b          , 

2 ; 2X ax Y by  . 
The present results are based on the following dimensions and properties of 

the shell a = b = 22,8 cm, h = 0,1587 cm, E= 3,3.102 KN/cm2, ν = 0,4. The form 
of Green function f, e and a was given by Korenev B.G. [6] 

The convergence of the solution for free vibration was shown in Table 1. It 
is obviously that the convergence is more rapid for low ratio (c/h = 5) than for 
higher ratio  16hс . It is found that the main factors affecting on the 
convergence are the mesh size, the rise of thickness ratio, boundary conditions 
and the degree of Green function used in the solution. It Table 2 the 
comparison of the results of minimum natural frequency of the shell with 
Galerkin solution was given. 
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Table 1 

R = a/b = 1,0 Mesh 
 N x N c/h = 5 c/h = 10 
Mode 1st mode 2nd mode 1st mode 2nd mode 
3 x 3 28,031 28,031 70,476 70,476 
5 x 5  37,333 40,419 69,677 72,204 
7 x 7  41,288 41,822 82,608 73,904 
9 x 9 40,865 42,171 49,543 81,466 
11 x 11 40, 793 41,924 82,998 83,427 
13 40,815 42,210 83,526 84,122 

Remarks : 1st mode – symmetrical with respect to the x and y directions; 2nd mode – 

anti-symmetrical with respect to the x and y directions; Multiplier  21 a D M   

Table 2 

Case Method   
c/h = 0  
a/b = 1  

Present method 
Galerkin method [2] 

9,0042 
9,0359 

c/h = 5 
a/b = 0,5 

Present method 
Galerkin method [2] 

22,536 
26,985 

c/h = 5 
a/b = 1,0 

Present method 
Galerkin method [2] 

40,815 
42,501 

c/h = 10  
a/b = 1,0  

Present method 
Galerkin method [2] 

61,053 
81,294 

c/h = 16 
a/b = 1  

Present method 
Galerkin method [2] 

83,426 
133,255 

 Multiplier   MDa21   
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