Дослідження нестаціонарних коливань пружного простору з двома круговими циліндричними отворами

Заголовок (англійською): 
Research of nonstationary vibrations of an elastic space with two circular cylindrical holes
Автор(и): 
Іванченко Г.М.
Чуприна Ю.А.
Малихін М.О.
Максим’юк О.В.
Мирошник О.М.
Автор(и) (англ): 
Ivanchenko H.M.
Chupryna Iu.A.
Malykhin M.O.
Maksymiuk О.V.
Myroshnyk O.M.
Ключові слова (укр): 
нестаціонарні коливання, пружне середовище, циліндричні отвори, гармонічне навантаження, граничні інтегральні рівняння, метод потенціалу, функції Ганкеля, розклад Маклорена, динамічна рівновага
Ключові слова (англ): 
nonstationary vibrations, elastic medium, cylindrical holes, harmonic loading, boundary integral equations, potential method, Hankel functions, Maclaurin expansion, dynamic equilibrium
Анотація (укр): 
У статті представлено комплексне дослідження нестаціонарних коливань пружного середовища з двома круглими циліндричними отворами, що піддаються залежному від часу граничному навантаженню. Постановка задачі здійснюється за нульових початкових умов, з переходом у частотну область шляхом розкладання в ряд Фур'є. Такий підхід дозволяє звести систему рівнянь динамічної рівноваги до послідовності крайових задач для різних значень частоти гармонічних коливань. Для розв'язання задачі застосовано метод потенціалів, який перетворює постановку на систему граничних інтегральних рівнянь у частотній області. Фундаментальний розв'язок вводиться в замкненій аналітичній формі, що включає функції Ганкеля першого роду нульового, першого та другого порядків, а його узагальнені похідні використовуються в інтегральних ядрах. Оскільки ці ядра стають сингулярними при збігу точок спостереження та інтегрування, пряма числова оцінка неможлива. Цю перешкоду долають шляхом застосування розкладання ядер у ряд Маклорена, в якому головний член збігається з ядром статичного потенціалу, тоді як члени вищого порядку залишаються скінченними. В результаті стає можливою алгебраизація системи граничних інтегральних рівнянь. Ефективність запропонованого підходу перевіряється шляхом розв'язання еталонної задачі про стаціонарні коливання середовища з круглим циліндричним отвором під гармонічним радіальним навантаженням. Результати показують, що використання кусково-квадратичного наближення невідомих забезпечує високу обчислювальну точність у широкому діапазоні частот. Числові експерименти підтверджують достовірність та стабільність методу в прогнозуванні радіальних переміщень та тангенціальних напружень у різних характерних точках межі, тим самим встановлюючи його застосовність для аналізу динамічної поведінки перфорованих пружних конструкцій. Крім того, аналіз підкреслює важливість застосування передових математичних методів для вирішення складних задач структурної динаміки, де традиційні числові методи стикаються з обмеженнями. Запропонована методологія демонструє стійкість не лише у визначенні локальних концентрацій напружень, але й у збереженні точності в режимах високої частоти, що робить її придатною для інженерних застосувань, що вимагають точності. Розроблену основу можна розширити на задачі з кількома взаємодіючими порожнинами, анізотропними матеріалами або тривимірною геометрією, які часто зустрічаються в аерокосмічній, машинобудівній та цивільній галузях. Отже, ця робота забезпечує не лише теоретичний прогрес, але й практичний обчислювальний інструмент, який можна інтегрувати в сучасні середовища моделювання для підтримки проектування та оцінки безпеки складних структурних систем.
Анотація (англ): 
The paper presents a comprehensive study of nonstationary vibrations of an elastic medium with two circular cylindrical holes subjected to time-dependent boundary loading. The formulation of the problem is carried out under zero initial conditions, with the transition into the frequency domain implemented by Fourier series expansion. This approach allows reducing the system of dynamic equilibrium equations to a sequence of boundary value problems for different values of the frequency of harmonic vibrations. To solve the problem, the potential method is applied, which transforms the formulation into a system of boundary integral equations in the frequency domain. A fundamental solution is introduced in closed analytical form, incorporating Hankel functions of the first kind of orders zero, one, and two, and its generalized derivatives are employed in the integral kernels. Since these kernels become singular when the observation and integration points coincide, direct numerical evaluation is impossible. This obstacle is overcome by applying the Maclaurin series expansion of the kernels, in which the leading term coincides with the static potential kernel, while higher-order terms remain finite. As a result, the algebraization of the system of boundary integral equations becomes feasible. The efficiency of the proposed approach is verified by solving a benchmark problem on steady-state vibrations of a medium with a circular cylindrical hole under harmonic radial loading. The results demonstrate that the use of piecewise-quadratic approximation of the unknowns ensures high computational accuracy over a wide frequency range. Numerical experiments confirm the validity and stability of the method in predicting radial displacements and tangential stresses at different characteristic points of the boundary, thus establishing its applicability for analyzing dynamic behavior of perforated elastic structures. Furthermore, the analysis highlights the importance of applying advanced mathematical techniques to address complex problems of structural dynamics where traditional numerical methods face limitations. The proposed methodology demonstrates robustness not only in capturing local stress concentrations but also in preserving accuracy under high-frequency regimes, making it suitable for engineering applications requiring precision. The developed framework can be further extended to problems with multiple interacting cavities, anisotropic materials, or three-dimensional geometries, which are often encountered in aerospace, mechanical, and civil engineering. Hence, this work provides not only theoretical advancement but also a practical computational tool that can be integrated into modern simulation environments to support the design and safety assessment of complex structural systems.
Публікатор: 
Київський національний університет будівництва і архітектури
Назва журналу, номер, рік випуску (укр): 
Опір матеріалів і теорія споруд, 2025, номер 115
Назва журналу, номер, рік випуску (англ): 
Strength of Materials and Theory of Structures, 2025, number 115
Мова статті: 
English
Формат документа: 
application/pdf
Дата публікації: 
22 Декабрь 2025
Номер збірника: 
Університет автора: 
Kyiv National University of Construction and Architecture 31 Povitryanykh Syl Avenue, Kyiv, 03680, Ukraine , National University of Civil Protection of Ukraine, Cherkasy, Ukraine
References: 
 
  1. Banerjee, P., & Butterfield, R. (1984). Boundary Element Methods in Applied Sciences. Moscow: Mir. 494 p.
  2. Cruse, T. A. (1996). BIE fracture mechanics analysis: 25 years of developments. Computational Mechanics, 18, 1–11.
  3. Vorona, Yu. V., Honcharenko, M. V., Kozak, A. A., & Chernenko, E. S. (2011). Vibrations of two-dimensional massive bodies weakened by normal separation cracks. Strength of Materials and Theory of Structures, 87, 131–143.
  4. Vorona, Yu. V., & Rusanova, O. S. (2010). An algorithm for solving vibration problems of solids with shear cracks. Strength of Materials and Theory of Structures, 86, 102–113.
  5. Kantor, B. Ya., Naumenko, V. V., & Strelnikova, E. A. (1995). On the approximation of a surface by flat elements in the numerical solution of singular integral equations with a Hadamard-type kernel. Reports of the National Academy of Sciences of Ukraine, 11, 21–23.
  6. Chernyshev, D., Ryzhakova, G., Honcharenko, T., Chupryna, I., & Reznik, N. (2023). Digital administration of the project based on the concept of smart construction. In V. Kreinovich, S. Thach, N. Nguyen, & V. Reddy (Eds.), Lecture Notes in Networks and Systems (Vol. 495, pp. 1316–1331). Springer.
  7. Roman, A., Andrii, S., Galyna, R., Iurii, C., & Hanna, S. (2022). Integration of data flows of the construction project life cycle to create a digital enterprise based on building information modeling. International Journal of Emerging Technology and Advanced Engineering, 12(1), 40–50.
  8. Chupryna, Y., Honcharenko, T., Ivakhnenko, I., Zinchenko, M., & Tsyfra, T. (2020). Reengineering of the construction companies based on BIM-technology. International Journal of Emerging Trends in Engineering Research, 8(8), 4166–4172.