Аннотації
05.07.2022
Проаналізовано сучасні дослідження живучості несучих конструкцій багатоповерхових будівель. Визначено недоліки досліджених раніше заходів посилення живучості сталевих багатоповерхових каркасів. Встановлено необхідність дослідження більш ефективних та економічно доцільних заходів. Досліджено зміну завантаженості різних елементів сталевого плоского каркасу під час пожежі. Проаналізовано залежність завантаженості рами від розташування джерела вогню на різних поверхах та прольотах. Розглянуто 4 сценарії розташування джерела пожежі в плоскому багатоповерховому каркасі.Проаналізовано вплив розподілу внутрішніх зусиль в балках при нагріванні на напружений стан каркасу, зокрема на місцеву стійкість поясу та стінки двотаврової балки. Виявлено, що від температурних розширень внаслідок пожежі першими в каркасі руйнуватися можуть не лише ті елементи, які нагріваються. Встановлено, що під час пожежі перше руйнування швидше відбувається в крайньому прольоті каркасу, ніж у середньому. При порівнянні сценаріїв пожежі на нижньому та верхньому поверхах каркасу визначено, що на нижчому поверсі колони більш схильні до того, щоб зруйнуватися раніше за балку, ніж на верхньому. При порівнянні сценаріїв пожежі в середньому та верхньому прольотах каркасу визначено, що в середньому прольоті балки більш схильні до того, щоб зруйнуватися раніше за колону, ніж у крайньому. Підтверджено, що залежно від розташування пожежі на різних поверхах та прольотах першими можуть руйнуватися як балка, так і колона каркасу. Встановлено, що залежно від розташування джерела пожежі можуть бути різні механізми руйнування багатоповерхового каркасу. Встановлено, що на напружений стан конструкцій каркасів суттєво впливає розподіл внутрішніх зусиль при температурних навантаженнях, а не лише вогнезахист та вогнестійкість сталевих конструкцій.
Modern studies of the multi-storey buildings load-bearing structures vitality are analyzed. The shortcomings of the previously studied measures to increase the steel multi-storey frames vitality are identified. The need to study more effective and cost-effective measures have been identified. The change of 2d steel frame various elements loading during a fire is investigated. The dependence of the frame load-bearing capacity on the location of the fire source on different floors and spans is analyzed. 4 scenarios of fire source location in 2d multi-storey frame are considered. The influence of the distribution of the internal forces in the heated beams on the frame stress state, in particular on the local buckling of the I-beam flange and the web is analyzed. It was found that due to temperature expansions due to fire, not only heated elements are can be the first to be damaged in the frame. It is established that during a fire the first destruction occurs faster in the outside span of the frame than in the middle. When comparing the fire scenarios on the lower and upper frame floors, it was determined that on the lower floor the columns are more prone to damage earlier than the beam on the upper floor. When comparing the fire scenarios in the middle and outside frame spans, it was determined that in the middle span the beams are more prone to collapse earlier than the column than in the outside. It has been confirmed that, depending on the fire source location on different floors and spans, both the beam and the column of the frame may be the first to collapse. It is established that depending on the fire source location there may be different mechanisms of multi-storey frame collapse. It is established that the frame structures' stress state is significantly influenced by the distribution of internal forces at temperature loads, and not only fire protection and steel structures fire resistance.
- A. Wada, K. Ohi, HiroyukiSuzuki, Y. Sakumoto, M. Fushimi, H. Kamura, Y. Murakami, M. Sasaki, K. Fujiwara (2004). “Study of Structural Redundancy of High-Rise Steel Building Due to the Effect of Heat and Loss of Vertical Structural Members”.
- R.Sun, I.Burgess, Zh.Huang, G.Dong (2015). “Progressive failure modelling and ductility demand of steel beam-to-column connections in fire”. Engineering Structures, 89, p. 66-78.
- Richard Liew, J.Y., Tang, L.K., Holmaas, T., and Choo, Y.S. (1998). “Advanced analysis for the assessment of steel frames in fire”. Journal of Constructional Steel Research, 47, 19-45.
- H. Tavakoli, F. Kiakojouri (2015). “Threat-Independent Column Removal and Fire-Induced Progressive Collapse: Numerical Study and Comparison”, Civil Engineering Infrastructures Journal, 48(1), p. 121-131.
- Jiang, J., Li, G.Q., and Usmani, A.S. (2014a). “Progressive collapse mechanisms of steel frames exposed to fire.” Advances in Structural Engineering, 17(3), 381-398.
- Jiang, B.H., Li, G.Q., and Usmani, A.S. (2015a). “Progressive collapse mechanisms investigation of planar steel moment frames under localized fire.” Journal of Constructional Steel Research, 115, 160-168.
- Sun, R.R., Huang, Z.H., and Burgess, I. (2012a). “Progressive Collapse Analysis of Steel Structures under Fire Conditions.” Engineering Structures, 34, p.400-413.
- Lange, D., Roben, C., and Usmani, A.S. (2012). “Tall Building Collapse Mechanisms Initiated by Fire: Mechanisms and Design Methodology.” Engineering Structures, 36,90-103.
- Drobot Dmitrij Yur'evich. Zhivuchest' bol'sheproletnykh metallicheskikh pokrytij : avtoreferat dis. kandidata tekhnicheskikh nauk : 05.23.01 / Drobot Dmitrij Yur'evich; [Mesto zashchity: Mosk. gos. stroit. un-t].- Moskva, 2010.- 22 s.: il. RGB OD, 9 10-3/3946.
- Daurov M. K. Oglyad vimog suchasnikh normativnikh dokumentіv іz rozrakhunku stalevikh karkasіv bagatopoverkhovikh budіvel' na opіr progresuyuchomu rujnuvannyu / M. K. Daurov, A. S. Bіlik // Mіstobuduvannya ta teritorіal'ne planuvannya. - 2019. - Vip. 70. - S. 175-186. - Rezhim dostupu: http://nbuv.gov.ua/UJRN/MTP_2019_70_18.
- Daurov M.K., Bilyk A.S. Providing of the vitality of steel frames of high-rise buildings under action of fire // Strength of Materials and Theory of Structures: Scientific-and-technical collected articles – Kyiv: KNUBA, 2019. – Issue 102. – P. 62-68.
- Bіlyk A. S. Porіvnyannya metodіv rozrakhunku metalevikh karkasіv visotnikh budіvel' na odinichnu zhivuchіst' / A. S. Bіlyk, A. І. Kovalenko // Zbіrnik naukovikh prac' Ukraїns'kogo іnstitutu stalevikh konstrukcіj іmenі V. M. Shimanovs'kogo. - 2015. - Vip. 16. - S. 30-39. - Rezhim dostupu: http://nbuv.gov.ua/UJRN/ZNPISK_2015_16_6.
- Bіlyk A. S. Dinamіchnі zusillya v kolonakh stalevikh karkasіv bagatopoverkhovikh budіvel' pri rozrakhunku na odinichnu zhivuchіst' / A. S. Bіlyk, A. І. Kovalenko // Resursoekonomnі materіali, konstrukcії, budіvlі ta sporudi. - 2016. - Vip. 32. - S. 304-309. - Rezhim dostupu: http://nbuv.gov.ua/UJRN/rmkbs_2016_32_43.
- Kovalenko A.І. Osoblivostі proektuvannya bagatopoverkhovikh budіvel' z odinichnoyu zhivuchіstyu ()/ A.І. Kovalenko // Vіsnik Odes'koї derzhavnoї akademії budіvnictva ta arkhіtekturi. - 2016. - Vip. 63. - S. 62-66. - Rezhim dostupu: http://nbuv.gov.ua/UJRN/Vodaba_2016_63_13.
- Bіlyk A. S. Suchasnі metodi modelyuvannya progresuyuchogo rujnuvannya budіvel' і sporud / A. S. Bіlyk, A. І. Kovalenko // Stroitel'stvo. Materialovedenie. Mashinostroenie. Seriya : Sozdanie vysokotekhnologicheskikh ehkokompleksov v Ukraine na osnove koncepcii sbalansirovannogo (ustojchivogo) razvitiya. - 2016. - Vyp. 87. - S. 35-41. - Rezhim dostupu: http://nbuv.gov.ua/UJRN/smmcvtek_2016_87_5.
- Zvіt pro naukovo-doslіdnu robotu rozroblennya propozicіj shchodo matematichnogo rozrakhunku bagatopoverkhovikh bezrigel'nikh karkasnikh budіvel' na stіjkіst' do progresuyuchogo rujnuvannya vnaslіdok pozhezhі, sprichinenoї zemletrusom. Dogovіr № N-14/265-11 vіd 22 listopada 2011 r. NDІBK.
- Behnam, B. andRezvani, F.H. (2015). “Structural evaluation of tall steel moment-resisting structures in simulated horizontally travelling postearthquake fire.” Journal of Performance of Constructed Facilities, DOI:10.1061/(ASCE) CF.1943-5509.0000696.
- B.A. Izzuddin, A.G. Vlassis, A.Y. Elghazouli, D.A. Nethercot. Progressive collapse of multi-storey buildings due to sudden column loss — Part I: Simplified assessment framework // Engineering Structures. - London: Elsevier, 2008.– Volume 30. – p. 1308-1318.
- A.G. Vlassis, B.A. Izzuddin, A.Y. Elghazouli, D.A. Nethercot. Progressive collapse of multi-storey buildings due to sudden column loss—Part II: Application// Engineering Structures. - London: Elsevier, 2008.– Volume 34. – p. 1424-1438.
- Tavakoli, H.R.,Kiakojouri F. Threat-Independent Column Removal and Fire-Induced Progressive Collapse: Numerical Study and Comparison // Civil Engineering Infrastructures Journal. – Tehran: University of Tehran ,2015. - Volume 48 (1). - p. 121-131.
- DBN V.1.2-2:2006. Sistema zabezpechennya nadіjnostі ta bezpeki budіvel'nikh oB’єktіv. Navantazhennya і vplivi. Normi proektuvannya. – Kiïv : Minbud Ukraïni, 2006. – 77 s. – (Derzhavni budivel'ni normi Ukraïni).
- DBN V.2.6-198:2014. Konstrukcії budіvel' і sporud. Stalevі konstrukcії. Normi proektuvannya. – Kiïv : Minregion Ukraïni, 2014. – 199 s. – (Derzhavni budivel'ni normi Ukraïni).
- UFC 4-023-03. United Facilities Criteria (UFC). «Design of Buildings to Resist Progressive Collapse». Department of Defense USA. 2009.
- DSTU-N B EN 1993-1-2:2010. Єvrokod 3. Proektuvannya stalevikh konstrukcіj. Chastina 1-2. Zagal'nі polozhennya. Rozrakhunok konstrukcіj na vognestіjkіst' (EN 1993-1-2:2005, IDT). - [Chinnі vіd 2013-07-01]. – K.: Mіnregіonbud Ukraїni, 2010. – 106 s.
- Barabash. M. A. Romashkіna Metodika modelyuvannya progresuyuchogo obvalennya na prikladі realnikh bagatopoverkhіvok // Budіvnitstvo. Materіaloznavstvo. Mashinobuduvannya. Serіya: Komp'yuternі sistemita іnformatsіynі tekhnologії vosvіtі. nautsі taupravlіnnі. – 2014. – Vip. 78. - S. 28-37. – Rezhimdostupu: http://nbuv.gov.ua/UJRN/smmcs_2014_78_6
- Gorodetskiy A. S. Deyakі aspekti rozrakhunku budіvel na stіykіst do progresuyuchogo ruynuvannya / A. S. Gorodetskiy. M. S. Barabash // Budіvnitstvo. Materіaloznavstvo. Mashinobuduvannya. Serіya: Іnnovatsіynі tekhnologії zhittєvogotsikluzhitlovikh. tsivіlnikh. promislovikh і transportnikhob'єktіv. – 2009. – Vip. 50. - S. 157-162. – Rezhimdostupu: http://nbuv.gov.ua/UJRN/smmit_2009_50_27.
- Modelyuvannya zhittievogo tsiklu visotnikh budіvelnikh konstruktsіy z urakhuvannyam stіykostі do progresuyuchogo ruynuvannya. Mіzhnarodniy zhurnal obchislyuvalnoi іnzhenerіi tabudіvnitstva. - 2013. – Vip. 9. Vipusk 4. –R.101-106.
- Bilyk S.I., BilykА.S., Nilova T.O., Shpynda V.Z., Tsyupyn E.I. Buckling of the steel frames with the I-shaped cross-section columns of variable web height // Strength of Materials and Theory of Structures: Scientific-and-technical collected articles – Kyiv: KNUBA, 2018. – Issue 100. – P. 140-154.
- Bilyk S.I., Lavrinenko L.I., Nilov O.O., Nilova T.O., Semchuk I.Y. Limit state theoretical and experimental investigation of corrugated sine-web under patchloading// Strength of Materials and Theory of Structures: Scientific-and-technical collected articles – Kyiv: KNUBA, 2020. – Issue 105. – P. 152-164.