Аннотації

Автор(и):
Лізунов П.П., Погорелова О.С., Постнікова Т.Г.
Автор(и) (англ)
Lizunov P.P., Pogorelova O.S., Postnikova T.G.
Дата публікації:

24.04.2024

Анотація (укр):

У роботі досліджено динаміку віброударної системи, що складається з основної (первинної) конструкції та сполученого з нею віброударного демпфера. Віброударний демпфер це віброударний нелінійний поглинач енергії (VINES). Оптимальна конструкція демпфера повинна забезпечувати найкраще пом’якшення вібрації основної конструкції. Процедури оптимізації для пошуку оптимального дизайну NES виконуються за допомогою стандартних засобів MATLAB. Ми використовували різні програми MATLAB, а саме програму surf, яка графічно показує діапазони пар параметрів, які потрібно оптимізувати; програми fminsearch і fmincon, які шукають локальні мінімуми цільової функції. Показано, що сама процедура оптимізації неоднозначна і містить достатню довільність. Її результат теж неоднозначний тому, що існує багато можливих наборів параметрів демпфера, які можуть забезпечити максимальне пом’якшення вібрацій основної конструкції. Ми не використовуємо генетичний алгоритм ga, оскільки він вибирає випадкові проміжні результати та дає випадково вибрані набори параметрів із різноманітності оптимальних параметрів. Встановлення цільової функції та її параметрів відіграє вирішальну роль у процесі оптимізації. За цільову функцію ми обрали максимальну повну енергію первинної структури. Кожен отриманий варіант набору параметрів демпфера повинен бути ретельно перевірений і проаналізований.Було порівняне п’ять отриманих оптимальних конструкцій демпфера з двома різними масами. При їхньому аналізі ми спостерігали різні режими руху, а саме періодичні режими різної періодичності з різною кількістю ударів за цикл, з різним співвідношенням періодів руху тіл: резонанс 1:1 із захопленням резонансу та резонанс 2:1; багато періодичний режим із багатьма ударами за цикл, якій виявивсяамплітудно-модульованим режимом. Остаточне рішення щодо оптимальної конструкції демпфера може бути прийнято з урахуванням різних інженерних міркувань щодо його маси та інших параметрів. Воно має базуватися на варіантах, отриманих в результаті процедури оптимізації.

Анотація (рус):

Анотація (англ):

The paper studies the dynamics of a vibro-impact system consisting of a main (primary) structure and a vibro-impact damper coupled to it. A vibro-impact damper is a vibro-impact nonlinear energy sink (VI NES). The optimal damper design should provide the best vibration mitigation for the primary structure. The optimization procedures for finding the optimal NES design are carried out using standard MATLAB tools. We used different MATLAB programs, namely surf program, which graphically shows the ranges of parameter pairs to be optimized; fminsearch and fminconprograms, which search for local minima of the objective function. It is shown that the optimization procedure itself is ambiguous and contains a sufficient amount of arbitrariness. Its result is also ambiguous. It is due to the presence of the many possible sets of damper parameters that can provide maximum mitigation of the main structure vibrations. We do not use the genetic algorithm gabecause it selects random intermediate results and yields randomly selected parameter sets from the optimal parameters manifold. Setting the objective function and its parameters plays a crucial role in the optimization process. We have chosen the maximum total energy of the primary structure as the objective function. Each resulting variant of the damper parameter set should be carefully tested and analyzed. We compared the five obtained optimal designs for dampers with two different masses. When analyzing them, we observed different motion modes, namely periodic modes of different periodicity with different number of impacts per cycle, with different ratio of bodies motion periods: 1:1 resonance with resonance capture and 2:1 resonance; amulti-periodic mode with many impacts per cycle, which turned out to be an amplitude-modulated mode – Amplitude Modulated Signal . The final decision on the optimal damper design may be made taking into account various engineering considerations regarding its mass and other parameters. It should be based on the options obtained as a result of the optimization procedure.

Література:

References:

  1. Kumar R., Kuske R., Yurchenko D. Exploring effective TET through a vibro-impact nonlinear energy sink over broad parameter regimes //Journal of Sound and Vibration. – 2024. – Т. 570. – С. 118131. https://doi.org/10.1016/j.jsv.2023.118131
  2. Gendelman O. V. Transition of energy to a nonlinear localized mode in a highly asymmetric system of two oscillators Transition of Energy to a Nonlinear Localized Mode in a Highly Asymmetric System of Two Oscillators //Nonlinear dynamics. – 2001. – Т. 25. – С. 237-253. https://doi.org/10.1007/978-94-017-2452-4_13
  3. Vakakis A. F., Gendelman O. Energy pumping in nonlinear mechanical oscillators: part II– resonance capture //J. Appl. Mech. – 2001. – Т. 68. – №. 1. – С. 42-48. https://doi.org/10.1115/1.1345525
  4. Ding H., Chen L. Q. Designs, analysis, and applications of nonlinear energy sinks //Nonlinear Dynamics. – 2020. – Т. 100. – №. 4. – С. 3061-3107. https://doi.org/10.1007/s11071-020-05724-1
  5. Saeed A. S., Abdul Nasar R., AL-Shudeifat M. A. A review on nonlinear energy sinks: designs, analysis and applications of impact and rotary types //Nonlinear Dynamics. – 2023. – Т. 111. – №. 1. – С. 1-37. https://doi.org/10.1007/s11071-022-08094-y
  6. Lu Z. et al. Nonlinear dissipative devices in structural vibration control: A review //Journal of Sound and Vibration. – 2018. – Т. 423. – С. 18-49.http://dx.doi.org/10.1016/j.jsv.2018.02.052
  7. Lee Y. S. et al. Passive non-linear targeted energy transfer and its applications to vibration absorption: a review //Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics. – 2008. – Т. 222. – №. 2. – С. 77-134. http://dx.doi.org/10.1243/14644193jmbd118
  8. Wierschem N. E. Targeted energy transfer using nonlinear energy sinks for the attenuation of transient loads on building structures. – University of Illinois at Urbana-Champaign, Newmark Structural Engineering Laboratory Report Series 045. 2014. https://www.ideals.illinois.edu/items/89701
  9. Lu, Z., Wang, Z., Masri, S. F., & Lu, X. Particle impact dampers: Past, present, and future //Structural Control and Health Monitoring. – 2018. – Т. 25. – №. 1. – С. e2058.http://dx.doi.org/10.1002/stc.2058
  10. Wang, J., Wierschem, N. E., Spencer Jr, B. F., & Lu, X. Track nonlinear energy sink for rapid response reduction in building structures //Journal of Engineering Mechanics. – 2015. – Т. 141. – №. 1. – С. 04014104. http://dx.doi.org/10.1061/(asce)em.1943-7889.0000824
  11. Dekemele K., Habib G. Inverted resonance capture cascade: modal interactions of a nonlinear energy sink with softening stiffness //Nonlinear Dynamics. – 2023. – Т. 111. – №. 11. – С. 9839-9861. https://doi.org/10.1007/s11071-023-08423-9 
  12. Al-Shudeifat M. A., Saeed A. S. Periodic motion and frequency energy plots of dynamical systems coupled with piecewise nonlinear energy sink //Journal of Computational and Nonlinear Dynamics. – 2022. – Т. 17. – №. 4. – С. 041005. https://doi.org/10.1115/1.4053509
  13. Kang, X., Tang, J., Xia, G., Wei, J., Zhang, F., & Sheng, Z.Design, Optimization, and Application of Nonlinear Energy Sink in Energy Harvesting Device //International Journal of Energy Research. – 2024. – Т. 2024. doi:10.1155/2024/2811428. 615 URL http://dx.doi.org/10.1155/2024/2811428
  14. Al-Shudeifat, M. A., Wierschem, N., Quinn, D. D., Vakakis, A. F., Bergman, L. A., & Spencer Jr, B. F. Numerical and experimental investigation of a highly effective single-sided vibro-impact non-linear energy sink for shock mitigation //International journal of non-linear mechanics. – 2013. – Т. 52. – С. 96-109. https://doi.org/10.1016/j.ijnonlinmec.2013.02.004 
  15. Pennisi G. Passive vibration control by using Nonlinear Energy Sink absorbers. Theoretical study and experimental investigations :дис. – INSTITUT SUPERIEUR DE L'AERONAUTIQUE ET DE L'ESPACE (ISAE), 2016. https://hal.science/tel-01471929
  16. Liu R., Kuske R., Yurchenko D. Maps unlock the full dynamics of targeted energy transfer via a vibro-impact nonlinear energy sink //Mechanical Systems and Signal Processing. – 2023. – Т. 191. – С. 110158. https://doi.org/10.1016/j.ymssp.2023.110158 
  17. Boroson E., Missoum S. Stochastic optimization of nonlinear energy sinks //Structural and Multidisciplinary Optimization. – 2017. – Т. 55. – С. 633-646. https://doi.org/10.1007/s00158-016-1526-y 
  18. Snoun C., Bergeot B., Berger S. Robust optimization of nonlinear energy sinks used for mitigation of friction-induced limit cycle oscillations //European Journal of Mechanics-A/Solids. – 2022. – Т. 93. – С. 104529.  https://doi.org/10.1016/j.euromechsol.2022.104529 
  19. Theurich T., Krack M. Experimental validation of impact energy scattering as concept for mitigating resonant vibrations //Journal of Structural Dynamics. – 2023. – Т. 2. – С. 1-23.https://doi.org/10.25518/2684-6500.126 
  20. Costa D., Kuske R., Yurchenko D. Qualitative changes in bifurcation structure for soft vs hard impact models of a vibro-impact energy harvester //Chaos: An Interdisciplinary Journal of Nonlinear Science. – 2022. – Т. 32. – №. 10. https://doi.org/10.1063/5.0101050 
  21. Feudo, S. L., Job, S., Cavallo, M., Fraddosio, A., Piccioni, M. D., &Tafuni, A. Finite contact duration modeling of a Vibro-Impact Nonlinear Energy Sink to protect a civil engineering frame structure against seismic events //Engineering Structures. – 2022. – Т. 259. – С. 114137. https://doi.org/10.1016/j.engstruct.2022.114137 
  22. Okolewski A., Blazejczyk-Okolewska B. Hard vs soft impacts in oscillatory systems' modeling revisited //Chaos: An Interdisciplinary Journal of Nonlinear Science. – 2021. – Т. 31. – №. 8. https://doi.org/10.1063/5.0057029 
  23. Blazejczyk-Okolewska B., Czolczynski K., Kapitaniak T. Classification principles of types of mechanical systems with impacts–fundamental assumptions and rules //European Journal of Mechanics-A/Solids. – 2004. – Т. 23. – №. 3. – С. 517-537. https://doi.org/10.1016/j.euromechsol.2004.02.005 
  24. Andreaus U., Chiaia B., Placidi L. Soft-impact dynamics of deformable bodies //Continuum Mechanics and Thermodynamics. – 2013. – Т. 25. – С. 375-398. https://doi.org/10.1007/s00161-012-0266-5 
  25. Bazhenov V. A., Pogorelova O. S., Postnikova T. G. Comparison of two impact simulation methods used for nonlinear vibroimpact systems with rigid and soft impacts //Journal of Nonlinear Dynamics. – 2013. – Т. 2013.  https://doi.org/10.1155/2013/485676 
  26. Bazhenov V., Pogorelova O., Postnikova T. Crisis-induced intermittency and other nonlinear dynamics phenomena in vibro-impact system with soft impact //Nonlinear Mechanics of Complex Structures: From Theory to Engineering Applications. – 2021. – С. 185-203. https://doi.org/10.1155/2013/485676 
  27. Goldsmith W. Impact: the Theory and Physical Behavior of Colliding Solids, Edward Arnold Ltd //London, England. – 1960.
  28. Johnson K. L. Contact mechanics. – Cambridge university press, 1987.
  29. Lizunov P., Pogorelova O., Postnikova T. The synergistic effect of the multiple parameters of vibro-impact nonlinear energy sink //Journal of AppliedMath. – 2023. – Т. 1. – №. 3. https://doi.org/10.59400/jam.v1i3.199
  30. Lizunov P. P., Pogorelova O., Postnikova T. Vibro-impact damper dynamics depending on system parameters. – 2023. Research Square. https://doi.org/10.21203/rs.3.rs-2786639/v1
  31. Lizunov P., Pogorelova O., Postnikova T. Selection of the optimal design for a vibro-impact nonlinear energy sink //Strength of Materials and Theory of Structures. – 2023. – №. 111. – С. 13-24.https://doi.org/10.32347/2410-2547.2023.111.13-24
  32. Al-Shudeifat, M. A., Wierschem, N., Quinn, D. D., Vakakis, A. F., Bergman, L. A., & Spencer Jr, B. F. Numerical and experimental investigation of a highly effective single-sided vibro-impact non-linear energy sink for shock mitigation //International journal of non-linear mechanics. – 2013. – Т. 52. – С. 96-109. https://www.sciencedirect.com/science/article/pii/ S0020746213000322
  33. Lizunov P., Pogorelova O., Postnikova T. The Influence of Various Optimization Procedures on the Dynamics and Efficiency of Nonlinear Energy Sink with Synergistic Effect Consideration //Available at SSRN 4663138.https://doi.org/10.2139/ssrn.4663138
  34. Saeed, A. S., AL-Shudeifat, M. A., Cantwell, W. J., &Vakakis, A. F. Two-dimensional nonlinear energy sink for effective passive seismic mitigation //Communications in Nonlinear Science and Numerical Simulation. – 2021. – Т. 99. – С. 105787. https://www.sciencedirect.com/science/article/pii/ S1007570421000988
  35. Youssef B., Leine R. I. A complete set of design rules for a vibro-impact NES based on a multiple scales approximation of a nonlinear mode //Journal of Sound and Vibration. – 2021. – Т. 501. – С. 116043. https://doi.org/10.1016/j.jsv.2021.116043
  36. AL-Shudeifat M. A., Saeed A. S. Comparison of a modified vibro-impact nonlinear energy sink with other kinds of NESs //Meccanica. – 2021. – Т. 56. – С. 735-752. https://doi.org/10.1007/s11012-020-01193-3
  37. Javidialesaadi A., Wierschem N. E. Optimal design of rotational inertial double tuned mass dampers under random excitation //Engineering Structures. – 2018. – Т. 165. – С. 412-421. https://doi.org/10.1016/j.engstruct.2018.03.033 
  38. Li T. Study of nonlinear targeted energy transfer by vibro-impact :дис. – Toulouse, INSA, 2016. https://doi.org/10.1007/s11071-016-3127-0 
  39. Gourdon, E., Alexander, N. A., Taylor, C. A., Lamarque, C. H., & Pernot, S. Nonlinear energy pumping under transient forcing with strongly nonlinear coupling: Theoretical and experimental results //Journal of sound and vibration. – 2007. – Т. 300. – №. 3-5. – С. 522-551. https://doi.org/10.1016/j.jsv.2006.06.074 
  40. Gendelman O. V. Targeted energy transfer in systems with external and self-excitation //Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. – 2011. – Т. 225. – №. 9. – С. 2007-2043. https://doi.org/10.1177/0954406211413976 
  41. Gendelman O. V., Alloni A. Forced system with vibro-impact energy sink: chaotic strongly modulated responses //Procedia IUTAM. – 2016. – Т. 19. – С. 53-64. https://doi.org/10.1016/j.piutam.2016.03.009 
  42. Starosvetsky Y., Gendelman O. V. Strongly modulated response in forced 2DOF oscillatory system with essential mass and potential asymmetry //Physica D: Nonlinear Phenomena. – 2008. – Т. 237. – №. 13. – С. 1719-1733. https://doi.org/10.1016/j.physd.2008.01.019