Аннотації
30.06.2016
В роботі представлений короткий опис стану проблем, пов‘язаних з нелінійною динамікою. Надаються відомості про деякі сучасні журнали та останні конференції за цією тематикою. Представлена інформація про 5-ту Міжнародну конференцію з нелінійної динаміки, яка відбулася в Національному технічному університеті "Харківський полiтехнiчний інститут" у вересні 2016 року і враження від неї
В работе представлено краткое описание состояния проблем, связанных с нелинейной динамикой. Даны сведения о некоторых современных журналах и последних конференциях по этой тематике. Представлена информация о 5-й Международной конференции по нелинейной динамике, состоявшейся в Национальном техническом университете "Харьковский политехнический институт" в сентябре 2016 года и впечатления о ней.
There is short description of problem state on nonlinear dynamics in this paper. Information about some contemporary journals and recent Conferences on this subject is given. Information about 5th International Conference on Nonlinear Dynamics which was holding in National Technical University “Kharkov Polytechnic Institute” in September 2016 and impression about it are presented.
1. Brogliato B. (ed.). Impacts in mechanical systems: analysis and modelling. – Springer Science & Business Media, 2000. – Т. 551.2. Leine R.I., Van Campen D.H. Bifurcation phenomena in non-smooth dynamical systems //European Journal of Mechanics-A/Solids. – 2006. – Т. 25. – №. 4. – С. 595-616.3. Dankowicz H., Nordmark A.B. On the origin and bifurcations of stick-slip oscillations //Physica D: Nonlinear Phenomena. – 2000. – Т. 136. – №. 3. – С. 280-302.4. Banerjee S., Ranjan P., Grebogi C. Bifurcations in two-dimensional piecewise smooth maps-theory and applications in switching circuits //IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications. – 2000. – Т. 47. – №. 5. – С. 633-643.5. Boechler N., Theocharis G., Daraio C. Bifurcation-based acoustic switching and rectification //Nature materials. – 2011. – Т. 10. – №. 9. – С. 665-668.6. Rajamani R. Vehicle dynamics and control. – Springer Science & Business Media, 2011.7. Chen L., Aihara K. Stability of genetic regulatory networks with time delay //IEEE Transactions on circuits and systems I: Fundamental Theory and Applications. – 2002. – Т. 49. – №. 5. – С. 602-608.8. Nayfeh A.H., Balachandran B. Applied nonlinear dynamics: analytical, computational and experimental methods. – John Wiley & Sons, 2008.9. Seydel R. Practical bifurcation and stability analysis. – Springer Science & Business Media, 2009. – Т. 5.10. Thompson J.M.T. Instabilities and catastrophes in science and engineering. Wiley, Chichester, 1982.11. Luo A. C.J., Guo Y. Vibro-impact dynamics. – John Wiley & Sons, 2012.12. Sharkovsky,A.N. Basins of attractors of trajectories. NaukovaDumka.., 2013. (in Russian)13. Mikhlin Y.V., Vakakis A.F., Salenger G. Direct and inverse problems encountered in vibro-impact oscillations of a discrete system //Journal of sound and vibration. – 1998. – Т. 216. – №. 2. – С. 227-250.14. Cao, Q.J., Han, Y.W., Liang, T.W., Wiercigroch, M., & Piskarev, S. Multiple buckling and codimension-three bifurcation phenomena of a nonlinear oscillator //International Journal of Bifurcation and Chaos. – 2014. – Т. 24. – №. 01. – С. 1430005.15. Mikhlin Y.V., Avramov K.V. Nonlinears normal modes for vibrating mechanical systems. Review of theoretical developments //Applied Mechanics Reviews. – 2010. – Т. 63. – №. 6. – С. 060802.16. Jeffrey, M.R., Champneys, A.R., Di Bernardo, M., Shaw, S.W. Catastrophic sliding bifurcations and onset of oscillations in a superconducting resonator. Physical Review E. 2010;81(1):016213.17. Grebogi, C., Ott, E., Yorke, J.A. Critical exponent of chaotic transients in nonlinear dynamical systems. Physical review letters. 1986;57(11):1284.18. Thompson, J.M.T., Stewart, H.B., Ueda, Y. Safe, explosive, and dangerous bifurcations in dissipative dynamical systems. Physical Review E. 1994;49(2):1019.19. Arnol’d, V.I. Catastrophe theory. Springer Science & Business Media; 2003.20. Afrajmovich, V.S., Il’yashenko, Y.S., Shil’nikov, L.P., Arnold, V.I., Kazarinoff, N. Dynamical Systems V: Bifurcation Theory and Catastrophe Theory. 1994.21. Shilnikov L.P., Shilnikov A.L., Turaev D.V. Showcase of blue sky catastrophes //International Journal of Bifurcation and Chaos. – 2014. – Т. 24. – №. 08. – С. 1440003.22. Kuznetsov S.P. .Dynamical Chaos //М.: Fhismathlit. – 2006. – P. 294. .[In Russian]23. Kuznetsov S.P. Dynamical Chaos and Hyperbolic Attractors: From Mathematics to Physics. – 2013.24. Govaerts W., Kuznetsov Y.A., Sautois B. Matcont //Scholarpedia. – 2006. – Т. 1. – №. 9. – С. 1375.25. Govaerts W., Kuznetsov Y.A. Interactive continuation tools //Numerical Continuation Methods for Dynamical Systems. – Springer Netherlands, 2007. – С. 51-75.26. Kuznetsov Y.A. Numerical Analysis of Bifurcations //Elements of Applied Bifurcation Theory. – Springer New York, 2004. – С. 505-585.27. Gulyayev, V.I., Bazhenov, V.A., Gotsuliak, E.A., Dechtyaruk E.S., Lizunov, P.P. Stability of Periodical Processes in Non-Linear Mechanical Systems. Vyshcha Shkola, Kiev, 1983.[In Russian]28. Bazhenov, V.A., Pogorelova, O.S., & Postnikova, T.G. Dynamic behaviour analysis of different types vibroimpact systems.LAP LAMBERT Academic Publ. GmbH and Co. KG Dudweileg,Germany, (2013).[In Russian]29. Bazhenov, V.A., Pogorelova, O.S., Postnikova, T.G., & Luk’yanchenko, O.A. Numerical investigations of the dynamic processes in vibroimpact systems in modeling impacts by a force of contact interaction //Strength of Materials. – 2008. – Т. 40. – №. 6. – С. 656-662.30. Bazhenov V.A. et al. Comparative analysis of modeling methods for studying contact interaction in vibroimpact systems //Strength of materials. – 2009. – Т. 41. – №. 4. – С. 392-398.31. Bazhenov V.A., Pogorelova O.S., Postnikova T.G. Effect of the structural parameters of the impact-vibratory system on its dynamics //Strength of materials. – 2011. – Т. 43. – №. 1. – С. 87-95.32. Bazhenov V.A., Pogorelova O.S., Postnikova T.G. Comparison of two impact simulation methods used for nonlinear vibroimpact systems with rigid and soft impacts //Journal of Nonlinear Dynamics. – 2013. – Т. 2013.33. Bazhenov V.A., Pogorelova O.S., Postnikova T.G. Modification of the One-Parameter Numerical Continuation Method for Analysis of the Dynamics of Vibroimpact Systems //Strength of Materials. – 2014. – Т. 46. – №. 6. – С. 801-809.34. Bazhenov, V.A., Lizunov, P.P., Pogorelova, O.S., Postnikova, T.G. & Otrashevskaia, V.V. Stability and Bifurcations Analysis for 2-DOF Vibroimpact System by Parameter Continuation Method. Part I: Loading Curve. Journal of Applied Nonlinear Dynamics, 2015, 4(4), 357-370.35. Bazhenov, V.A., Lizunov, P.P., Pogorelova, O.S., Postnikova T.G. Numerical Bifurcation Analysis of Discontinuous 2-DOF Vibroimpact System. Part 2: Frequency-Amplitude response. Journal of Applied Nonlinear Dynamics. 2016;5(3), 269-281.36. Bazhenov V.A., Pogorelova O.S., Postnikova T.G. Contact impact forces at discontinuous 2-DOF vibroimpact //Applied Mathematics and Nonlinear Sciences. – 2016. – Т. 1. – №. 1. – С. 183-196.37. Bazhenov, V.A., Pogorelova, O.S., Postnikova, T.G. Change of impact kind in vibroimpact system due its parameters changing. In: MATEC Web of Conferences. vol. 16. EDP Sciences; 2014. p. 05007.38. Bazhenov, V.A., Pogorelova, O.S., Postnikova, T.G. Dynamic behaviour of nonlinear nonsmooth discontinuous vibroimpact system// Strength of Materials and Theory of Structures 95, 2016, 3-15.39. Bazhenov, V.A., Pogorelova, O.S., Postnikova, T.G. Discontinuous Bifurcations under 2-DOF Vibroimpact System Moving//Proceedings of the 5th International Conference on Nonlinear Dynamics ND-KhPI2016 September 27-30, 2016, Kharkov, Ukraine, p.57-64.
1. Brogliato B. (ed.). Impacts in mechanical systems: analysis and modelling. – Springer Science & Business Media, 2000. – Т. 551.2. Leine R.I., Van Campen D.H. Bifurcation phenomena in non-smooth dynamical systems //European Journal of Mechanics-A/Solids. – 2006. – Т. 25. – №. 4. – С. 595-616.3. Dankowicz H., Nordmark A.B. On the origin and bifurcations of stick-slip oscillations //Physica D: Nonlinear Phenomena. – 2000. – Т. 136. – №. 3. – С. 280-302.4. Banerjee S., Ranjan P., Grebogi C. Bifurcations in two-dimensional piecewise smooth maps-theory and applications in switching circuits //IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications. – 2000. – Т. 47. – №. 5. – С. 633-643.5. Boechler N., Theocharis G., Daraio C. Bifurcation-based acoustic switching and rectification //Nature materials. – 2011. – Т. 10. – №. 9. – С. 665-668.6. Rajamani R. Vehicle dynamics and control. – Springer Science & Business Media, 2011.7. Chen L., Aihara K. Stability of genetic regulatory networks with time delay //IEEE Transactions on circuits and systems I: Fundamental Theory and Applications. – 2002. – Т. 49. – №. 5. – С. 602-608.8. Nayfeh A.H., Balachandran B. Applied nonlinear dynamics: analytical, computational and experimental methods. – John Wiley & Sons, 2008.9. Seydel R. Practical bifurcation and stability analysis. – Springer Science & Business Media, 2009. – Т. 5.10. Thompson J.M.T. Instabilities and catastrophes in science and engineering. Wiley, Chichester, 1982.11. Luo A. C.J., Guo Y. Vibro-impact dynamics. – John Wiley & Sons, 2012.12. Sharkovsky,A.N. Basins of attractors of trajectories. NaukovaDumka.., 2013. (in Russian)13. Mikhlin Y.V., Vakakis A.F., Salenger G. Direct and inverse problems encountered in vibro-impact oscillations of a discrete system //Journal of sound and vibration. – 1998. – Т. 216. – №. 2. – С. 227-250.14. Cao, Q.J., Han, Y.W., Liang, T.W., Wiercigroch, M., & Piskarev, S. Multiple buckling and codimension-three bifurcation phenomena of a nonlinear oscillator //International Journal of Bifurcation and Chaos. – 2014. – Т. 24. – №. 01. – С. 1430005.15. Mikhlin Y.V., Avramov K.V. Nonlinears normal modes for vibrating mechanical systems. Review of theoretical developments //Applied Mechanics Reviews. – 2010. – Т. 63. – №. 6. – С. 060802.16. Jeffrey, M.R., Champneys, A.R., Di Bernardo, M., Shaw, S.W. Catastrophic sliding bifurcations and onset of oscillations in a superconducting resonator. Physical Review E. 2010;81(1):016213.17. Grebogi, C., Ott, E., Yorke, J.A. Critical exponent of chaotic transients in nonlinear dynamical systems. Physical review letters. 1986;57(11):1284.18. Thompson, J.M.T., Stewart, H.B., Ueda, Y. Safe, explosive, and dangerous bifurcations in dissipative dynamical systems. Physical Review E. 1994;49(2):1019.19. Arnol’d, V.I. Catastrophe theory. Springer Science & Business Media; 2003.20. Afrajmovich, V.S., Il’yashenko, Y.S., Shil’nikov, L.P., Arnold, V.I., Kazarinoff, N. Dynamical Systems V: Bifurcation Theory and Catastrophe Theory. 1994.21. Shilnikov L.P., Shilnikov A.L., Turaev D.V. Showcase of blue sky catastrophes //International Journal of Bifurcation and Chaos. – 2014. – Т. 24. – №. 08. – С. 1440003.22. Kuznetsov S.P. .Dynamical Chaos //М.: Fhismathlit. – 2006. – P. 294. .[In Russian]23. Kuznetsov S.P. Dynamical Chaos and Hyperbolic Attractors: From Mathematics to Physics. – 2013.24. Govaerts W., Kuznetsov Y.A., Sautois B. Matcont //Scholarpedia. – 2006. – Т. 1. – №. 9. – С. 1375.25. Govaerts W., Kuznetsov Y.A. Interactive continuation tools //Numerical Continuation Methods for Dynamical Systems. – Springer Netherlands, 2007. – С. 51-75.26. Kuznetsov Y.A. Numerical Analysis of Bifurcations //Elements of Applied Bifurcation Theory. – Springer New York, 2004. – С. 505-585.27. Gulyayev, V.I., Bazhenov, V.A., Gotsuliak, E.A., Dechtyaruk E.S., Lizunov, P.P. Stability of Periodical Processes in Non-Linear Mechanical Systems. Vyshcha Shkola, Kiev, 1983.[In Russian]28. Bazhenov, V.A., Pogorelova, O.S., & Postnikova, T.G. Dynamic behaviour analysis of different types vibroimpact systems.LAP LAMBERT Academic Publ. GmbH and Co. KG Dudweileg,Germany, (2013).[In Russian]29. Bazhenov, V.A., Pogorelova, O.S., Postnikova, T.G., & Luk’yanchenko, O.A. Numerical investigations of the dynamic processes in vibroimpact systems in modeling impacts by a force of contact interaction //Strength of Materials. – 2008. – Т. 40. – №. 6. – С. 656-662.30. Bazhenov V.A. et al. Comparative analysis of modeling methods for studying contact interaction in vibroimpact systems //Strength of materials. – 2009. – Т. 41. – №. 4. – С. 392-398.31. Bazhenov V.A., Pogorelova O.S., Postnikova T.G. Effect of the structural parameters of the impact-vibratory system on its dynamics //Strength of materials. – 2011. – Т. 43. – №. 1. – С. 87-95.32. Bazhenov V.A., Pogorelova O.S., Postnikova T.G. Comparison of two impact simulation methods used for nonlinear vibroimpact systems with rigid and soft impacts //Journal of Nonlinear Dynamics. – 2013. – Т. 2013.33. Bazhenov V.A., Pogorelova O.S., Postnikova T.G. Modification of the One-Parameter Numerical Continuation Method for Analysis of the Dynamics of Vibroimpact Systems //Strength of Materials. – 2014. – Т. 46. – №. 6. – С. 801-809.34. Bazhenov, V.A., Lizunov, P.P., Pogorelova, O.S., Postnikova, T.G. & Otrashevskaia, V.V. Stability and Bifurcations Analysis for 2-DOF Vibroimpact System by Parameter Continuation Method. Part I: Loading Curve. Journal of Applied Nonlinear Dynamics, 2015, 4(4), 357-370.35. Bazhenov, V.A., Lizunov, P.P., Pogorelova, O.S., Postnikova T.G. Numerical Bifurcation Analysis of Discontinuous 2-DOF Vibroimpact System. Part 2: Frequency-Amplitude response. Journal of Applied Nonlinear Dynamics. 2016;5(3), 269-281.36. Bazhenov V.A., Pogorelova O.S., Postnikova T.G. Contact impact forces at discontinuous 2-DOF vibroimpact //Applied Mathematics and Nonlinear Sciences. – 2016. – Т. 1. – №. 1. – С. 183-196.37. Bazhenov, V.A., Pogorelova, O.S., Postnikova, T.G. Change of impact kind in vibroimpact system due its parameters changing. In: MATEC Web of Conferences. vol. 16. EDP Sciences; 2014. p. 05007.38. Bazhenov, V.A., Pogorelova, O.S., Postnikova, T.G. Dynamic behaviour of nonlinear nonsmooth discontinuous vibroimpact system// Strength of Materials and Theory of Structures 95, 2016, 3-15.39. Bazhenov, V.A., Pogorelova, O.S., Postnikova, T.G. Discontinuous Bifurcations under 2-DOF Vibroimpact System Moving//Proceedings of the 5th International Conference on Nonlinear Dynamics ND-KhPI2016 September 27-30, 2016, Kharkov, Ukraine, p.57-64.