Аннотації
28.05.2021
Ударно-вібраційний майданчик широко застосовується у будівельній галузі для ущільнення та формування великогабаритних бетонних виробів. Його математична модель, яка створена у нашій попередній роботі, відповідає всім основним вимогам ударно-вібраційної технології для виробництва збірного залізобетону на низькочастотних резонансних платформах-вібраторах. Модель відповідає двох масовій віброударній системі з двома ступнями вільності з м’яким ударом. Це сильно нелінійна негладка розривна система є незвичайною віброударною системою завдяки своїм специфічним властивостям. Верхнє тіло з дуже великою масою відривається від нижнього на дуже маленьку відстань, а потім падає на м’який обмежник, що й викликає м’який удар. Потім воно знову відскакує та падає і так далі. М'який удар моделюється нелінійною контактною силою Герца. Модель продемонструвала багато унікальних явищ, властивих нелінійним негладким динамічним системам при зміні керуючих параметрів. У цій роботі ми демонструємо перехідний хаос у віброударній системі. Наявність перехідного хаосув ударно-вібраційному майданчику є чудовим явищем само по собі, крім того допомагаєзрозуміти динамічні процеси, що відбуваються в ударно-вібраційному майданчику при зміні технологічної маси форми з бетоном. Фазові траєкторії, перерізи Пуанкаре, графіки переміщень та контактних сил, спектри Фур'є, показники Ляпунова та вейвлет-характеристики використовуються в чисельних дослідженнях для визначення хаотичних та періодичних фаз реалізації. Показано як залежність перехідного хаосу від значення керуючого параметра, так і чутливу залежність від початкових умов. Ми сподіваємось, що цей аналіз може допомогти уникнути небажаної поведінки ударно-вібраційного майданчика під час експлуатації та підібрати відповідні параметри при проєктуванні, оскільки перехідний хаос може бути небезпечним та небажаним станом віброударної системи.
Platform-vibrator with shock is widely used in the construction industry for compacting and molding large concrete products. Its mathematical model, created in our previous work, meets all the basic requirements of shock-vibration technology for the precast concrete production on low-frequency resonant platform-vibrators. This model corresponds to the two-body 2-DOF vibro-impact system with a soft impact. It is strongly nonlinear non-smooth discontinuous system. This is unusual vibro-impact system due to its specific properties. The upper body, with a very large mass, breaks away from the lower body a very short distance, and then falls down onto the soft constraint that causes a soft impact. Then it bounces and falls again, and so on. A soft impact is simulated with nonlinear Hertzian contact force. This model exhibited many unique phenomena inherent in nonlinear non-smooth dynamical systems with varying control parameters. In this paper, we demonstrate the transient chaos in a vibro-impact system. Our finding of transient chaos in platform-vibrator with shock, besides being a remarkable phenomenon by itself, provides an understanding of the dynamical processes that occur in the platform-vibrator when varying the technological mass of the mold with concrete. Phase trajectories, Poincaré maps, graphs of time series and contact forces, Fourier spectra, the largest Lyapunov exponent, and wavelet characteristics are used in numerical investigations to determine the chaotic and periodic phases of the realization. We show both the dependence of the transient chaos on the control parameter value and the sensitive dependence on the initial conditions. We hope that this analysis can help avoid undesirable platform-vibrator behaviour during design and operation due to inappropriate system parameters, since transient chaos may be a dangerous and unwanted state of a vibro-impact system.
- Tél T. The joy of transient chaos //Chaos: An Interdisciplinary Journal of Nonlinear Science. – 2015. – Т. 25. – №. 9. – С. 097619.
- Bazhenov V., Pogorelova O., Postnikova T. Creation of mathematical model of platform-vibrator with shock. designed for concrete products compaction and molding //Strength of Materials and Theory of Structures. – 2020. – №. 104. – С. 103-116.
- Bazhenov V. A., Pogorelova O. S., Postnikova T. G. & Otrashevska V.V. Dynamic Behaviour of the Platform-vibrator with Soft Impact. Part 1. Dependence on Exciting Frequency // Discontinuity, Nonlinearity, and Complexity. – 2021. (in press)
- Goldsmith W. Impact: The Theory and Physical Behavior of Colliding Solids. Edward Arnold Ltd. – 1960.
- Johnson K. L. Contact mechanics.Сambridge univ //Press. Cambridge. – 1985. – Т. 95. – С. 365.
- Bazhenov V. A., Pogorelov. O. S., Postnikova T. G. Dynamic Behaviour of the Platform-vibrator with Soft Impact. Part 2. Interior crisis. Crisis-induced intermittency// Discontinuity. Nonlinearity. and Complexity. – 2021. (in press)
- Macau E. E. N. (ed.). A mathematical modeling approach from nonlinear dynamics to complex systems. – Springer International Publishing. 2019.
- Mishra A. et al. Routes to extreme events in dynamical systems: Dynamical and statistical characteristics //Chaos: An Interdisciplinary Journal of Nonlinear Science. – 2020. – Т. 30. – №. 6. – С. 063114.
- Elaskar S. Studies on Chaotic Intermittency: дис. – Doctoral Thesis. Universidad Politécnica de Madrid. Madrid. 2018.
- Elaskar S., Del Río E. New advances on chaotic intermittency and its applications. – New York: Springer. 2017. – С. 35-38.
- Wang G., Lai Y. C., Grebogi C. Transient chaos-a resolution of breakdown of quantum-classical correspondence in optomechanics //Scientific reports. – 2016. – Т. 6. – С. 35381.
- Astaf’ev G. B., Koronovskii A. A., Khramov A. E. Behavior of dynamical systems in the regime of transient chaos //Technical Physics Letters. – 2003. – Т. 29. – №. 11. – С. 923-926.
- Bhalekar S. et al. Transient chaos in fractional Bloch equations //Computers & Mathematics with Applications. – 2012. – Т. 64. – №. 10. – С. 3367-3376.
- Jánosi I. M., Tel T. Time-series analysis of transient chaos //Physical Review E. – 1994. – Т. 49. – №. 4. – С. 2756.
- Danca M. F. Hidden transient chaotic attractors of Rabinovich–Fabrikant system //Nonlinear Dynamics. – 2016. – Т. 86. – №. 2. – С. 1263-1270.
- Motter A. E. et al. Doubly transient chaos: Generic form of chaos in autonomous dissipative systems //Physical review letters. – 2013. – Т. 111. – №. 19. – С. 194101.
- Kovács T., Érdi B. Transient chaos in the Sitnikov problem //Celestial Mechanics and Dynamical Astronomy. – 2009. – Т. 105. – №. 4. – С. 289-304.
- Tél T., Gruiz M. Chaotic dynamics: an introduction based on classical mechanics. – Cambridge University Press, 2006.
- Sabarathinam S., Thamilmaran K. Transient chaos in a globally coupled system of nearly conservative Hamiltonian Duffing oscillators //Chaos. Solitons & Fractals. – 2015. – Т. 73. – С. 129-140.
- Rempel E. L., Chian A. C. L. Origin of transient and intermittent dynamics in spatiotemporal chaotic systems //Physical review letters. – 2007. – Т. 98. – №. 1. – С. 014101.
- Lai Y. C., Tél T. Transient chaos: complex dynamics on finite time scales. – Springer Science & Business Media. 2011. – Т. 173.
- Lorenz E. Predictability: does the flap of a butterfly's wing in Brazil set off a tornado in Texas? – na, 1972. – С. 181.
- Grebogi C., Ott E., Yorke J. A. Crises. sudden changes in chaotic attractors. and transient chaos //Physica D: Nonlinear Phenomena. – 1983. – Т. 7. – №. 1-3. – С. 181-200.
- Borschevsky. A.A., Ilyin A.S. The Mechanical equipment for manufacture of building materials and products. The textbook for high schools on «Pr-in builds. And designs». M: the Publishing house the Alliance. – 2009 (in Russian)
- Kapitaniak T., Bishop S. R. The illustrated dictionary of nonlinear dynamics and chaos. – Wiley. 1999.
- Bhalekar S. et al. Transient chaos in fractional Bloch equations //Computers & Mathematics with Applications. – 2012. – Т. 64. – №. 10. – С. 3367-3376.
- Jánosi I. M., Tel T. Time-series analysis of transient chaos //Physical Review E. – 1994. – Т. 49. – №. 4. – С. 2756.
- Kapitaniak T., Bishop S. R. The illustrated dictionary of nonlinear dynamics and chaos. – Wiley. 1999.
- Polikar R. et al. The wavelet tutorial. – 1996.
- https://www.mathworks.com/help/wavelet/ref/cwt.html
- Tél T. The joy of transient chaos //Chaos: An Interdisciplinary Journal of Nonlinear Science. – 2015. – Т. 25. – №. 9. – С. 097619.
- Bazhenov V., Pogorelova O., Postnikova T. Creation of mathematical model of platform-vibrator with shock. designed for concrete products compaction and molding //Strength of Materials and Theory of Structures. – 2020. – №. 104. – С. 103-116.
- Bazhenov V. A., Pogorelova O. S., Postnikova T. G. & Otrashevska V.V. Dynamic Behaviour of the Platform-vibrator with Soft Impact. Part 1. Dependence on Exciting Frequency // Discontinuity, Nonlinearity, and Complexity. – 2021. (in press)
- Goldsmith W. Impact: The Theory and Physical Behavior of Colliding Solids. Edward Arnold Ltd. – 1960.
- Johnson K. L. Contact mechanics.Сambridge univ //Press. Cambridge. – 1985. – Т. 95. – С. 365.
- Bazhenov V. A., Pogorelov. O. S., Postnikova T. G. Dynamic Behaviour of the Platform-vibrator with Soft Impact. Part 2. Interior crisis. Crisis-induced intermittency// Discontinuity. Nonlinearity. and Complexity. – 2021. (in press)
- Macau E. E. N. (ed.). A mathematical modeling approach from nonlinear dynamics to complex systems. – Springer International Publishing. 2019.
- Mishra A. et al. Routes to extreme events in dynamical systems: Dynamical and statistical characteristics //Chaos: An Interdisciplinary Journal of Nonlinear Science. – 2020. – Т. 30. – №. 6. – С. 063114.
- Elaskar S. Studies on Chaotic Intermittency: дис. – Doctoral Thesis. Universidad Politécnica de Madrid. Madrid. 2018.
- Elaskar S., Del Río E. New advances on chaotic intermittency and its applications. – New York: Springer. 2017. – С. 35-38.
- Wang G., Lai Y. C., Grebogi C. Transient chaos-a resolution of breakdown of quantum-classical correspondence in optomechanics //Scientific reports. – 2016. – Т. 6. – С. 35381.
- Astaf’ev G. B., Koronovskii A. A., Khramov A. E. Behavior of dynamical systems in the regime of transient chaos //Technical Physics Letters. – 2003. – Т. 29. – №. 11. – С. 923-926.
- Bhalekar S. et al. Transient chaos in fractional Bloch equations //Computers & Mathematics with Applications. – 2012. – Т. 64. – №. 10. – С. 3367-3376.
- Jánosi I. M., Tel T. Time-series analysis of transient chaos //Physical Review E. – 1994. – Т. 49. – №. 4. – С. 2756.
- Danca M. F. Hidden transient chaotic attractors of Rabinovich–Fabrikant system //Nonlinear Dynamics. – 2016. – Т. 86. – №. 2. – С. 1263-1270.
- Motter A. E. et al. Doubly transient chaos: Generic form of chaos in autonomous dissipative systems //Physical review letters. – 2013. – Т. 111. – №. 19. – С. 194101.
- Kovács T., Érdi B. Transient chaos in the Sitnikov problem //Celestial Mechanics and Dynamical Astronomy. – 2009. – Т. 105. – №. 4. – С. 289-304.
- Tél T., Gruiz M. Chaotic dynamics: an introduction based on classical mechanics. – Cambridge University Press, 2006.
- Sabarathinam S., Thamilmaran K. Transient chaos in a globally coupled system of nearly conservative Hamiltonian Duffing oscillators //Chaos. Solitons & Fractals. – 2015. – Т. 73. – С. 129-140.
- Rempel E. L., Chian A. C. L. Origin of transient and intermittent dynamics in spatiotemporal chaotic systems //Physical review letters. – 2007. – Т. 98. – №. 1. – С. 014101.
- Lai Y. C., Tél T. Transient chaos: complex dynamics on finite time scales. – Springer Science & Business Media. 2011. – Т. 173.
- Lorenz E. Predictability: does the flap of a butterfly's wing in Brazil set off a tornado in Texas? – na, 1972. – С. 181.
- Grebogi C., Ott E., Yorke J. A. Crises. sudden changes in chaotic attractors. and transient chaos //Physica D: Nonlinear Phenomena. – 1983. – Т. 7. – №. 1-3. – С. 181-200.
- Borschevsky. A.A., Ilyin A.S. The Mechanical equipment for manufacture of building materials and products. The textbook for high schools on «Pr-in builds. And designs». M: the Publishing house the Alliance. – 2009 (in Russian)
- Kapitaniak T., Bishop S. R. The illustrated dictionary of nonlinear dynamics and chaos. – Wiley. 1999.
- Bhalekar S. et al. Transient chaos in fractional Bloch equations //Computers & Mathematics with Applications. – 2012. – Т. 64. – №. 10. – С. 3367-3376.
- Jánosi I. M., Tel T. Time-series analysis of transient chaos //Physical Review E. – 1994. – Т. 49. – №. 4. – С. 2756.
- Kapitaniak T., Bishop S. R. The illustrated dictionary of nonlinear dynamics and chaos. – Wiley. 1999.
- Polikar R. et al. The wavelet tutorial. – 1996.
- https://www.mathworks.com/help/wavelet/ref/cwt.html