Аннотації
28.05.2021
Для роликової формувальної установки з енергетично врівноваженим привідним механізмом для трьох формувальних візків визначено вплив кута зміщення кривошипів на нерівномірність руху. При цьому вказана установка представлена динамічною моделлю з одним ступенем вільності, де за узагальнену координату прийнято кутову координату повороту кривошипу. Для такої моделі записано диференціальне рівняння руху, для розв’язку якого було використано чисельний метод. При розв’язку диференціального рівняння руху було визначено зведений момент інерції всієї установки, зведений до осі повороту кривошипа момент сил опору переміщенню формувальних візків при формуванні виробів з будівельних сумішей, розраховано номінальну розрахункову потужність привідного двигуна. За розрахованими даними вибрано асинхронний електродвигун з короткозамкненим ротором, для якого за формулою Клосса побудовано механічну характеристику. Розв’язавши диференціальне рівняння руху з усіма визначеними характеристиками, отримано функцію зміни кутової швидкості кривошипу з моменту пуску і при усталеному режимі руху. Після цього розраховано час, що відповідає значенню кутової швидкості, та отримано функцію зміни кутового прискорення кривошипу з моменту пуску і при усталеному режимі руху. Нерівномірність руху установки на усталеному режимі руху оцінена коефіцієнтом нерівномірності руху, коефіцієнтом динамічності руху та узагальненим коефіцієнтом оцінки руху. Отримані результати можуть бути у подальшому використані для уточнення та вдосконалення існуючих інженерних методів розрахунку привідних механізмів машин роликового формування як на стадіях проектування, так і у режимах реальної експлуатації.
Для роликовой формовочной установки с энергетически уравновешенным приводным механизмом для трёх формовочных тележек определено влияние угла смещения кривошипов на неравномерность движения. При этом указанная установка представлена динамической моделью с одной степенью свободы, где в качестве обобщённой координаты принято угловую координату поворота кривошипа. Для такой модели записано дифференциальное уравнение движения, для решения которого использован численный метод. При решении дифференциального уравнения движения определены приведенный момент инерции всей установки, приведенный к оси вращения кривошипа момент сил сопротивления перемещению формовочных тележек при формовании изделий из строительных смесей, рассчитана номинальная расчётная мощность приводного двигателя. По рассчитанным данным выбран асинхронный электродвигатель с короткозамкнутым ротором, для которого по формуле Клосса построена механическая характеристика. Решив дифференциальное уравнение движения со всеми определёнными характеристиками, получена функция изменения угловой скорости кривошипа с момента пуска и при установившемся режиме движения. После этого рассчитано время, соответствующее значению угловой скорости, и получена функция изменения углового ускорения кривошипа с момента пуска и при установившемся режиме движения. Неравномерность движения установки на установившемся режиме движения оценена коэффициентом неравномерности движения, коэффициентом динамичности движения и обобщённым коэффициентом оценки движения. Отслежено влияние угла смещения кривошипов привода на неравномерность движения, в результате чего установлено, что указанные коэффициенты имеют минимальные значения при смещении кривошипов на угол Δφ=60˚. Полученные результаты могут быть в дальнейшем использованы для уточнения и усовершенствования существующих инженерных методов расчёта приводных механизмов машин роликового формования как на стадиях проектирования, так и в режимах реальной эксплуатации.
The impact of the cranks displacement angle on the motion non-uniformity is determined for three forming trolleys of a roller forming unit with an energy-balanced drive mechanism. At the same time, the specified unit is presented by a dynamic model with one freedom degree, where the extended coordinate is taken as the angular coordinate of the crank rotation. For such a model, a differential equation of motion is written, for solved which a numerical method was used. The inertia reduced moment of the whole unit, and the resistance forces moment, reduced to the crank rotation axis, to move of forming trolleys during the formation of products from building mixtures are determined, and also the nominal rated power of the electric motor was calculated, when solved a differential equation of motion. According to these data, asynchronous electric motor with a short-circuited rotor was chosen, for which a mechanical characteristic is constructed by the Kloss formula. Having solved the differential equation of motion with all defined characteristics, we obtain the change function of the crank angular velocity from start-up moment and during steady motion mode. After that, we calculated the time corresponding to the angular velocity value, and obtained the change function of the crank angular acceleration from start-up moment and during steady motion mode. The motion non-uniformity of the roller forming unit has been determined by the motion non-uniformity factor, the motion dynamism factor and the extended factor of motion assessment during steady motion mode. The impact of drive cranks displacement angle on the motion non-uniformity has been traced, as a result, the specified factors have the minimum values at cranks displacement on the angle Δφ=60°. The results may in the future are used to refine and improve the existing engineering methods for estimating the drive mechanisms of roller forming machines, both at design stages and in practical use.
1. Harnets V. M. Prohresyvni betonoformuiuchi ahrehaty i kompleksy (Progressive concrete-forming units and complexes). Kyiv: Budivelnyk, 1991. 144 p. [in Ukrainian].2. Harnets V. M., Zaichenko S. V., Chovniuk Yu. V., Shalenko V. O., Prykhodko Ya. S. Betonoformuvalni ahrehaty. Konstruktyvno-funktsionalni skhemy, pryntsyp dii, osnovy teorii: Monohrafiia (Concrete-forming units. Structural and functional schemes, operation principle, theory basics: Monograph). Kyiv: Interservis, 2015. 238 p. [in Ukrainian].3. Kuzin V. N. Tehnologija rolikovogo formovanija ploskih izdelij iz melkozernistyh betonov (Roller forming technology of flat products from fine-grained concrete: Extended abstract of candidate’s thesis). Moscow, 1981. 20 p. [in Russian].4. Rjushin V. T. Issledovanie rabochego processa i razrabotka metodiki rascheta mashin rolikovogo formovanija betonnyh smesej (Working process research and methodology development of calculating machines for concrete mixtures roller forming: Extended abstract of candidate’s thesis). Kyiv, 1986. 20 p. [in Russian].5. Loveikin V. S., Pochka K. I. Dynamichnyi analiz rolykovoi formovochnoi ustanovky z rekuperatsiinym pryvodom (Dynamic analysis of roller forming unit with recuperative drive). Dynamika, mitsnist i nadiinist silskohospodarskykh mashyn: materialy pershoi Mizhnarodnoi naukovo-tekhnichnoi konferentsii (Dynamics, Strength and Reliability of Agricultural Machinery: Proceedings of the 1st International Scientific and Technical Conference (DSR AM-I). Ternopil, 2004. P. 507–514 (in Ukrainian).6. Nazarenko I. I., Smirnov V. M., Pelevin L. Ye., Fomin A. V., Sviderskyi A. T., Kosteniuk O. O., Ruchynskyi M. M., Diedov O. P., Harkavenko O. M., Martyniuk I. Yu. Osnovy teorii rukhu zemleryinykh i uschilniuvalnykh mashyn budindustrii z kerovanymy u chasi optymalnymy parametramy: Monohrafiia (Motion theory fundamentals of earthmoving and compaction machines for building industry with time-controlled optimal parameters: Monograph). Kyiv: MP Lesia, 2013. 188 p. (in Ukrainian).7. Zaichenko S., Shalenko V., Shevchuk N., Vapnichna V. Development of a geomechanic complex for geotechnical monitoring contour mine groove. Eastern-European Journal of Enterprise Technologies. 2017. Vol. 3/9 (87). P. 19–25. DOI: 10.155/1729-4061.2017.102067.8. Harnets V. M., Chovniuk Yu. V., Zaichenko S. V., Shalenko V. O., Prykhodko Ya. S. Teoriia i praktyka stvorennia betonoformuvalnykh ahrehativ (BFA) (Theory and practice of creating concrete-forming units). Hirnychi, budivelni, dorozhni ta melioratyvni mashyny. 2014. Issue 83. P. 49–54 (in Ukrainian).9. Harnets V. M., Zaichenko S. V., Prykhodko Ya. S., Shalenko V. O. Rozrobka naukovo-praktychnykh rekomendatsii po stvorenniu betonoformuiuchykh ahrehativ (BFA) (Development of scientific and practical recommendations for the creation of concrete-forming). Hirnychi, budivelni, dorozhni ta melioratyvni mashyny. 2012. Issue 79. P. 46–52 (in Ukrainian).10. Zaichenko S. V., Shevchuk S. P., Harnets V. M. Enerhetychnyi analiz protsesu rolykovoho uschilnennia (Energy analysis of the roller compaction process). Enerhetyka: Ekonomika, tekhnolohiia, ekolohiia. 2012. Vol. 1 (30). P. 77–83 (in Ukrainian).11. Zaichenko S. V., Shevchuk S. P., Harnets V. M. Tryvymirne modeliuvannia protsesu rolykovoho uschilnennia stovburnoho kriplennia (Three-dimensional modeling of roller compaction process of the trunk). Hirnychi, budivelni, dorozhni ta melioratyvni mashyny. 2012. Issue 79. P. 40–45 (in Ukrainian).12. Prykhodko Ya. S., Harnets V. M. Vzaiemouzghodzhenist roboty mekhanizmiv pry rolyko-ekstruziinomu formuvanni bahatopustotnykh vyrobiv (Mutual coherence of mechanisms in roller-extrusion forming of multi-hollow products). Haluzeve mashynobuduvannia, budivnytstvo. 2012. Vol. 1 (31). P. 305–310. (in Ukrainian).13. Loveikin V. S., Pochka K. I., Romasevych Yu. O., Pochka O. B. Dynamichnyi analiz rolykovoi formuvalnoi ustanovky z kryvoshypno-shatunnym pryvidnym mekhanizmom (Dynamic analysis of roller forming unit with crank drive mechanism). Opir materialiv i teoriia sporud. 2019. Issue 102. P. 91–108. DOI: 10.32347/2410-2547.2019.102.91-108 (in Ukrainian).14. Loveikin V. S., Pochka K. I., Prystailo M. O., Pochka O. B. Dynamichne zrivnovazhennia pryvidnoho mekhanizmu rolykovoi formuvalnoi ustanovky z enerhetychno vrivnovazhenym pryvodom (Drive mechanism dynamic balancing of roller forming unit with energy-balanced drive). Opir materialiv i teoriia sporud. 2019. Issue 103. P. 112–130. DOI: 10.32347/2410-2547.2019.103.112-130 (in Ukrainian).15. Loveikin V. S., Pochka K. I. Sintez kulachkovogo privodnogo mehanizma rolikovoj formovochnoj ustanovki s kombinirovannym rezhimom dvizhenija po uskoreniju tret'ego porjadka (Synthesis of a cam drive mechanism for roller forming unit with combined third-order acceleration mode). Nauka i tehnika. Minsk, 2017. Vol. 16 (3). P. 206–214. DOI: 10.21122/2227-1031-2017-16-3-206-214 (in Russian).16. Loveikin V. S., Pochka K. I. Analiz nerivnomirnosti rukhu rolykovoi formuvalnoi ustanovky z enerhetychno vrivnovazhenym pryvodom (Motion non-uniformity analysis of roller forming unit with energy-balanced drive). Vibratsii v tekhnitsi ta tekhnolohiiakh. 2010. Vol. 4 (60). P. 20–29 (in Ukrainian).17. Loveikin V. S., Pochka K. I. Obgruntuvannia parametriv enerhetychno vrivnovazhenoho pryvodu rolykovoi formuvalnoi ustanovky (Parameters substantiation of energy-balanced drive for roller forming unit). Tekhnika budivnytstva. 2014. Issue 32. P. 25–32 (in Ukrainian).18. Pat. 50032 U Ukraine, IPC В28В 13/00. Ustanovka dlia formuvannia vyrobiv z betonnykh sumishei (Forming unit for products from concrete mixtures) / Loveikin V. S., Pochka K. I. Publ. 25.05.2010 (in Ukrainian).19. Artobolevskij I. I. Teorija mehanizmov i mashin (Mechanisms and machines theory). Moscow, 1975. 640 p. (in Russian).20. Orlov I. N. Jelektrotehnicheskij spravochnik (Electrotechnical handbook)/ (Vol. 1–3). Vol. 2. Jelektrotehnicheskie izdelija i ustrojstva (Electrical products and devices). Moscow, 1986. 712 p. (in Russian).21. Shejnblit A. E. Kursovoe proektirovanie detalej mashin (Course design of machine parts). Moscow, 1991. 432 p. (in Russian).22. Loveikin V. S. Ocenka dvizhenija mehanizmov i mashin (Motion assessment of mechanisms and machines). Podyemno-transportnoe oborudovanie. Kyiv: Tehnika, 1989. P. 16–18 (in Russian).
1. Harnets V. M. Prohresyvni betonoformuiuchi ahrehaty i kompleksy (Progressive concrete-forming units and complexes). Kyiv: Budivelnyk, 1991. 144 p. [in Ukrainian].2. Harnets V. M., Zaichenko S. V., Chovniuk Yu. V., Shalenko V. O., Prykhodko Ya. S. Betonoformuvalni ahrehaty. Konstruktyvno-funktsionalni skhemy, pryntsyp dii, osnovy teorii: Monohrafiia (Concrete-forming units. Structural and functional schemes, operation principle, theory basics: Monograph). Kyiv: Interservis, 2015. 238 p. [in Ukrainian].3. Kuzin V. N. Tehnologija rolikovogo formovanija ploskih izdelij iz melkozernistyh betonov (Roller forming technology of flat products from fine-grained concrete: Extended abstract of candidate’s thesis). Moscow, 1981. 20 p. [in Russian].4. Rjushin V. T. Issledovanie rabochego processa i razrabotka metodiki rascheta mashin rolikovogo formovanija betonnyh smesej (Working process research and methodology development of calculating machines for concrete mixtures roller forming: Extended abstract of candidate’s thesis). Kyiv, 1986. 20 p. [in Russian].5. Loveikin V. S., Pochka K. I. Dynamichnyi analiz rolykovoi formovochnoi ustanovky z rekuperatsiinym pryvodom (Dynamic analysis of roller forming unit with recuperative drive). Dynamika, mitsnist i nadiinist silskohospodarskykh mashyn: materialy pershoi Mizhnarodnoi naukovo-tekhnichnoi konferentsii (Dynamics, Strength and Reliability of Agricultural Machinery: Proceedings of the 1st International Scientific and Technical Conference (DSR AM-I). Ternopil, 2004. P. 507–514 (in Ukrainian).6. Nazarenko I. I., Smirnov V. M., Pelevin L. Ye., Fomin A. V., Sviderskyi A. T., Kosteniuk O. O., Ruchynskyi M. M., Diedov O. P., Harkavenko O. M., Martyniuk I. Yu. Osnovy teorii rukhu zemleryinykh i uschilniuvalnykh mashyn budindustrii z kerovanymy u chasi optymalnymy parametramy: Monohrafiia (Motion theory fundamentals of earthmoving and compaction machines for building industry with time-controlled optimal parameters: Monograph). Kyiv: MP Lesia, 2013. 188 p. (in Ukrainian).7. Zaichenko S., Shalenko V., Shevchuk N., Vapnichna V. Development of a geomechanic complex for geotechnical monitoring contour mine groove. Eastern-European Journal of Enterprise Technologies. 2017. Vol. 3/9 (87). P. 19–25. DOI: 10.155/1729-4061.2017.102067.8. Harnets V. M., Chovniuk Yu. V., Zaichenko S. V., Shalenko V. O., Prykhodko Ya. S. Teoriia i praktyka stvorennia betonoformuvalnykh ahrehativ (BFA) (Theory and practice of creating concrete-forming units). Hirnychi, budivelni, dorozhni ta melioratyvni mashyny. 2014. Issue 83. P. 49–54 (in Ukrainian).9. Harnets V. M., Zaichenko S. V., Prykhodko Ya. S., Shalenko V. O. Rozrobka naukovo-praktychnykh rekomendatsii po stvorenniu betonoformuiuchykh ahrehativ (BFA) (Development of scientific and practical recommendations for the creation of concrete-forming). Hirnychi, budivelni, dorozhni ta melioratyvni mashyny. 2012. Issue 79. P. 46–52 (in Ukrainian).10. Zaichenko S. V., Shevchuk S. P., Harnets V. M. Enerhetychnyi analiz protsesu rolykovoho uschilnennia (Energy analysis of the roller compaction process). Enerhetyka: Ekonomika, tekhnolohiia, ekolohiia. 2012. Vol. 1 (30). P. 77–83 (in Ukrainian).11. Zaichenko S. V., Shevchuk S. P., Harnets V. M. Tryvymirne modeliuvannia protsesu rolykovoho uschilnennia stovburnoho kriplennia (Three-dimensional modeling of roller compaction process of the trunk). Hirnychi, budivelni, dorozhni ta melioratyvni mashyny. 2012. Issue 79. P. 40–45 (in Ukrainian).12. Prykhodko Ya. S., Harnets V. M. Vzaiemouzghodzhenist roboty mekhanizmiv pry rolyko-ekstruziinomu formuvanni bahatopustotnykh vyrobiv (Mutual coherence of mechanisms in roller-extrusion forming of multi-hollow products). Haluzeve mashynobuduvannia, budivnytstvo. 2012. Vol. 1 (31). P. 305–310. (in Ukrainian).13. Loveikin V. S., Pochka K. I., Romasevych Yu. O., Pochka O. B. Dynamichnyi analiz rolykovoi formuvalnoi ustanovky z kryvoshypno-shatunnym pryvidnym mekhanizmom (Dynamic analysis of roller forming unit with crank drive mechanism). Opir materialiv i teoriia sporud. 2019. Issue 102. P. 91–108. DOI: 10.32347/2410-2547.2019.102.91-108 (in Ukrainian).14. Loveikin V. S., Pochka K. I., Prystailo M. O., Pochka O. B. Dynamichne zrivnovazhennia pryvidnoho mekhanizmu rolykovoi formuvalnoi ustanovky z enerhetychno vrivnovazhenym pryvodom (Drive mechanism dynamic balancing of roller forming unit with energy-balanced drive). Opir materialiv i teoriia sporud. 2019. Issue 103. P. 112–130. DOI: 10.32347/2410-2547.2019.103.112-130 (in Ukrainian).15. Loveikin V. S., Pochka K. I. Sintez kulachkovogo privodnogo mehanizma rolikovoj formovochnoj ustanovki s kombinirovannym rezhimom dvizhenija po uskoreniju tret'ego porjadka (Synthesis of a cam drive mechanism for roller forming unit with combined third-order acceleration mode). Nauka i tehnika. Minsk, 2017. Vol. 16 (3). P. 206–214. DOI: 10.21122/2227-1031-2017-16-3-206-214 (in Russian).16. Loveikin V. S., Pochka K. I. Analiz nerivnomirnosti rukhu rolykovoi formuvalnoi ustanovky z enerhetychno vrivnovazhenym pryvodom (Motion non-uniformity analysis of roller forming unit with energy-balanced drive). Vibratsii v tekhnitsi ta tekhnolohiiakh. 2010. Vol. 4 (60). P. 20–29 (in Ukrainian).17. Loveikin V. S., Pochka K. I. Obgruntuvannia parametriv enerhetychno vrivnovazhenoho pryvodu rolykovoi formuvalnoi ustanovky (Parameters substantiation of energy-balanced drive for roller forming unit). Tekhnika budivnytstva. 2014. Issue 32. P. 25–32 (in Ukrainian).18. Pat. 50032 U Ukraine, IPC В28В 13/00. Ustanovka dlia formuvannia vyrobiv z betonnykh sumishei (Forming unit for products from concrete mixtures) / Loveikin V. S., Pochka K. I. Publ. 25.05.2010 (in Ukrainian).19. Artobolevskij I. I. Teorija mehanizmov i mashin (Mechanisms and machines theory). Moscow, 1975. 640 p. (in Russian).20. Orlov I. N. Jelektrotehnicheskij spravochnik (Electrotechnical handbook)/ (Vol. 1–3). Vol. 2. Jelektrotehnicheskie izdelija i ustrojstva (Electrical products and devices). Moscow, 1986. 712 p. (in Russian).21. Shejnblit A. E. Kursovoe proektirovanie detalej mashin (Course design of machine parts). Moscow, 1991. 432 p. (in Russian).22. Loveikin V. S. Ocenka dvizhenija mehanizmov i mashin (Motion assessment of mechanisms and machines). Podyemno-transportnoe oborudovanie. Kyiv: Tehnika, 1989. P. 16–18 (in Russian).