Методика дослідження нелінійного деформування, стійкості та коливань тонких пружних оболонок неоднорідної структури

Заголовок (англійською): 
A Method for Analysis of Nonlinear Deformation, Buckling, and Vibrations of Thin Elastic Shells with Inhomogeneous Structures
Автор(и): 
Кривенко О.П.
Лізунов П.П.
Ворона Ю.В.
Калашніков О.Б.
Автор(и) (англ): 
Krivenko O.P.
Lizunov P.P.
Vorona Yu.V.
Kalashnikov O.B.
Ключові слова (укр): 
неоднорідна оболонка, геометрично нелінійне деформування, стійкість, модальний аналіз, термосилове навантаження, універсальний просторовий скінченний елемент, моментна схема скінченних елементів
Ключові слова (англ): 
inhomogeneous shell, geometrically nonlinear deformation, buckling, modal analysis, thermomechanical loading, universal 3D finite element, moment finite-element scheme
Анотація (укр): 
Розглянуто постановку задачі та методику аналізу напружено-деформованого стану, втрати стійкості та коливань пружних оболонок з неоднорідною структурою. Модальний аналіз оболонок виконується на кожному кроці навантаження. Метод дає змогу досліджувати поведінку оболонок зі складною формою серединної поверхні, геометричними особливостями за товщиною та багатошаровою структурою матеріалу при термосиловому навантаженні. Тонка оболонка апроксимується одним скінченним елементом (СЕ) за товщиною. При цьому використовуються просторові СЕ одного типу для моделювання ділянок оболонки зі ступінчасто-зміною товщиною. Тому застосовується універсальний скінченний елемент. Він побудований на базі ізопараметричного просторового елемента з полілінійними функціями форми для координат і переміщень і має додаткові параметри. Універсальний скінченний елемент може трансформуватися (модифікуватися) для точного опису ділянок оболонки зі ступінчастою зміною товщини. Цей елемент може ексцентрично зміщуватися щодо середньої поверхні оболонки і змінювати товщину. Бічні грані сусідніх СЕ знаходяться в безперервному контакті, а СЕ дозволяє моделювати різкі зломи оболонки. Підхід є сучасним і простим у реалізації, оскільки базується на використанні співвідношень тривимірної геометрично нелінійної теорії термопружності та застосуванні моментної схеми скінченних елементів. Ефективність методу продемонстровано на класичних тестових прикладах. Досліджено збіжність, точність і надійність отриманих розв’язків. Порівняння результатів розрахунків, отриманих за моментною схемою скінченних елементів, з даними інших авторів показує хороший збіг розв’язків.
Анотація (англ): 
The formulation of the problem and the method of analysis of the stress-strain state, buckling and vibrations of elastic shells with inhomogeneous structure are considered. The modal analysis of the shells is performed at each stage of loading. The method allows one to study the behavior of shells with a complex shape of the middle surface, geometric features throughout the thickness, and a multilayer material structure under thermomechanical loading. We approximate a thin shell with one finite element (FE) over the entire thickness. At the same time, we use spatial FEs of the same type to model shell portions with stepwise-varying thickness. So we apply the universal finite element. It is based on an isoparametric 3D element with polylinear shape functions for coordinates and displacements and has additional parameters. The universal finite element can be transformed (modified) to accurately describe portions of the shell with stepped-variable thickness. This element can be eccentrically displaced relative to the average surface of the shell and change its own thickness. The side edges of neighboring FEs are in continuous contact, and the FE allows simulating sharp bends of the shell. The approach is modern and easy to implement, since it is based on the use of the relations of the three-dimensional geometrically nonlinear theory of thermoelasticity and the application of the moment finite-element scheme. The effectiveness of the method is demonstrated on classical test examples. The convergence, accuracy and reliability of the obtained solutions are investigated. Comparison of the results of calculations obtained by the moment finite-element scheme with the data of other authors shows a good agreement between the solutions.
Публікатор: 
Київський національний університет будівництва і архітектури
Назва журналу, номер, рік випуску (укр): 
Опір матеріалів і теорія споруд, 2023, номер 110
Назва журналу, номер, рік випуску (англ): 
Strength of Materials and Theory of Structures, 2023, number 110
Мова статті: 
English
Формат документа: 
application/pdf
Дата публікації: 
15 September 2023
Номер збірника: 
Розділ: 
Опір матеріалів і теорія споруд, 2023, номер 110
Університет автора: 
Kyiv National University of Construction and Architecture 31, Povitroflotsky ave., Kyiv, Ukraine, 03037
References: 
  1. Bazhenov V. A., Krivenko O. P. Buckling and vibrations of elastic inhomogeneous shells under thermo-mechanical loads (Stiikist i kolyvannia pruzhnykh neodnoridnykh obolonok pry termosylovykh navantazhenniakh). – Kyiv: Karavella, 2020. – 187 p. ISBN: 978-966-8019-85-2 (in Ukrainian).
  2. Grigorenko Y.M., Gulyaev V.I. Nonlinear problems of shell theory and their solution methods (review) // Appl. Mech 27, 929–947 (1991)
  3. Grigolyuk E. I., Kabanov V. V. Shell stability. (Ustojchivost obolochek). – M.: Nauka, 1978. – 360 p. (in Russian)
  4. Zarutskii V.A., Prokopenko N.Y. Vibrations and Stability of Shallow Ribbed Shells with a Rectangular Planform // Int. Appl. Mech. 38, 710–715 (2002).
  5. Gavrilenko G.D., Matsner V.I., Kutenkova O.A. Dent and thickness effects on the critical loads of stiffened shells // Strength of Materials, 2011. – Vol. 43, No. 3. – Pp. 347-351
  6. Podvornyi A.V., Semenyuk N.P., Trach V.M. Stability of Inhomogeneous Cylindrical Shells Under Distributed External Pressure in a Three-Dimensional Statement // Int. Appl. Mech. 53, 623–638 (2017).
  7. Kantor B. Ya. Nonlinear Problems in the Theory of Inhomogeneous Shallow Shells (Nelineynyye zadachi teorii neodnorodnykh pologikh obolochek). – Kyiv: Naukova Dumka, 1974. – 136 p. (in Russian)
  8. Hutchinson J. W., Thompson J. M. T. Nonlinear Buckling Interaction for Spherical Shells Subject to Pressure and Probing Forces // J. Appl. Mech 84(6), 061001 (2017).
  9. Gavrilenko G. D., Trubitsina O. A. Oscillations and stability of ribbed shells of revolution (Kolebaniya i ustoychivost' rebristykh obolochek vrashcheniya). - Dnipropetrovsk: TOV "Barviks", 2008. - 155 p. (in Russian).
  10. Finite element method in solid mechanics (Metod konechnykh elementov v mekhanike tverdykh tel) / A. S. Sakharov, V. N. Kislooky, V. V. Kirichevsky [et al.].– Kyiv: Vishcha shk. Golov. izd-vo, 1982. - 480 p. (in Russian).
  11. Cinefra M. Formulation of 3D finite elements using curvilinear coordinates // Mechanics of Advanced Materials and Structures, pp, 1-10 (2020).
  12. Thornton E. A. Thermal Buckling of Plates and Shells // Applied Mechanics Review. 1993. Vol. 46, Iss. 10. P. 485–506.
  13. Bloch V.I. Theory of elasticity (Teoriya uprugosti). – Kharkov: Publishing House of KhGU, 1964. – 483 p. (in Russian).
  14. Bazhenov V. A., Krivenko O. P., Solovei M. O. Nonlinear deformation and buckling of elastic shells with inhomogeneous structure (Neliniine deformuvannia ta stiikist pruzhnykh obolonok neodnoridnoi struktury). – Kyiv: ZAT Vipol, 2010. – 316 p. ISBN: 978-966-646-097-7 (in Ukrainian).
  15. Bazhenov V. A., Krivenko O. P., Legostaev A. D. Stability and natural vibrations of inhomogeneous shells taking into account the stress state (Stiykistʹ i vlasni kolyvannya neodnoridnykh obolonok z urakhuvannyam napruzhenoho stanu) // Strength of Materials and Theory of Structures: Scientific-and-technical collected articles – Kyiv: KNUBA, 2020. 2015. - Issue 95. - C. 96-113. (in Ukrainian).
  16. Bazhenov V., Krivenko O. Buckling and Natural Vibrations of Thin Elastic Inhomogeneous Shells. – LAP LAMBERT Academic Publishing. Saarbruken, Deutscland, 2018. – 97 p. ISBN: 978-613-9-85790-6
  17. Solovei M. O., Krivenko O. P., Kalashnikov O. B. Comparative analysis of the results of stability calculations of thin elastic shells (Porivnyalʹnyy analiz rezulʹtativ rozrakhunkiv stiykosti tonkykh pruzhnykh obolonok) // Strength of Materials and Theory of Structures: Scientific-and-technical collected articles – Kyiv: KNUBA, 2009. - Issue 83. - P. 63-73. (in Ukrainian).
  18. Solovei M. O., Krivenko O. P., Kalashnikov O. B., Tamilko O. A. Comparative analysis of the stability of axisymmetric shells of linearly variable thickness (Porivnyalʹnyy analiz stiykosti osesymetrychnykh obolonok liniyno-zminnoyi tovshchyny) // Strength of Materials and Theory of Structures: Scientific-and-technical collected articles – Kyiv: KNUBA, 2009. - Issue 84. - P. 89-96. (in Ukrainian).
  19. Bazhenov V. A., Solovei N. A., Krivenko O. P., Gusar P. P., Dubina A. S., Kalashnikov A. B., Mishchenko O. A. Study of nonlinear deformation and stability of elastic inhomogeneous shells based on shell and spatial finite element models (Issledovaniye nelineynogo deformirovaniya i ustoychivosti uprugikh neodnorodnykh obolochek na osnove obolochechnoy i prostranstvennoy konechno-elementnykh modeley) // Proceedings of the V International Scientific and Practical Conference "Engineering Systems - 2012". April 16-18, 2012. - M.: RUDN University, 2012. - P. 162-167. (in Russian).
  20. Solovei M. O., Krivenko O. P., Kalashnikov O. B. The influence of preheating on the loss of stability of hollow shells under the action of pressure // Strength of Materials and Theory of Structures: Scientific-and-technical collected articles – Kyiv: KNUBA, 2012. - Issue 90. - P. 143-157. (in Ukrainian).
  21. Bazhenov V. A., Solovei M. O., Krivenko O. P., Mishchenko O. O., Kalashnikov O. B. Study of the stability of thin elastic shells of constant and linearly variable thickness (Doslidzhennya stiykosti tonkykh pruzhnykh obolonok staloyi ta liniyno-zminnoyi tovshchyny) // Building mechanics and building structures: Collection of articles. - M.: Izdatelsto SKAD SOFT, 2013. - P. 27-33. (in Ukrainian).
  22. Bazhenov V. A., Solovey N. A., Krivenko O. P., Kalashnikov A. B., Mishchenko O. A. Analysis of modeling of nonlinear deformation and stability of elastic inhomogeneous shells in some software systems (Analiz modelirovaniya nelineynogo deformirovaniya i ustoychivosti uprugikh neodnorodnykh obolochek v nekotorykh programmnykh kompleksakh) // Proceedings of the VI International Scientific and Practical Conference "Engineering Systems - 2013", April 24–26, 2013. - M.: RUDN University, 2013. - P. 96- 102. (in Russian).
  23. Vol’mir A. S. Stability of Deformable Systems (Ustoychivost' deformiruyemykh system) - M.: Nauka, 1967. – 984 p.
  24. Karpilovsky V. S., Kriksunov E. Z., Perel'muter A. V., Perel'muter M. A. Software SCAD (Vyichislitelnyiy kompleks SCAD). – M.: SCAD SOFT, 2009. – 656 p. (in Russian).
  25. Strelets-Streletskiy E.B., Bogovis V.E., Genzersky Y.V., Geraymovich Y.D. [et al.]. LIRA 9.4. User Guide. Basics. Textbook (LIRA 9.4. Rukovodstvo polzovatelya. Osnovy. Uchebnoe posobie). – Kyiv: Fact, 2008. 164 p. (in Russian).
  26. Rychkov S. MSC.visualNASTRAN for Windows. – M.: NT Press, 2004. – 552 p. (in Russian).
  27. Cowep G.R., Lindberg G.M., Olson M.D. A shallow shell finite element of triangular shape // Int. J. Solids and Structures, 1970. – V.6, №8. – Рp. 1133-1156.
  28. Olson M.D., Linberg G.M. Vibration analysis of cantilever plates, using a new cylindrical shell finite elements // Pros of 2nd Conf. math. struct. mech., AF base Wright. Peterson. Otto, 1968. – Р. 247-269.
  29. Bossak M.A., Zienkiewicz O.C. Free vibration of initially stressed solids with particular referents to centrifugal force in rotation machinery // J.Strain Anal. – 1973. – V.8, №4. – P. 245-252.