Гіперболічні моделі в аналізі тепло- та вологообміну у неоднорідних пористих матеріалах
Заголовок (англійською):
Hyperbolic models in the analysis of heat and moisture exchange in inhomogeneous porous materials
Автор(и):
Човнюк Ю. В.,
Чередніченко П.П.
Москвітіна А.С.
Шишина М.О
Шудра Н.С
Іванов Є.О.
Автор(и) (англ):
Chovniuk Yu.V.
Cherednichenko P.P.
Moskvitina A.S.
Shyshyna M.O.
Shudra N.S.
Ivanov E.O.
Ключові слова (укр):
рівняння Гюера-Крумхансля, тепломасообмін, тонкі плівки, капілярно-пористі тіла, неоднорідність, число Кнудсена, гіперболічні рівняння тепло- і вологопереносу
Ключові слова (англ):
Guyer-Krumhansl equation, heat and mass transfer, thin films, capillary-porous bodies, inhomogenuity, Knudsen number, hyperbolic equation of heat and moisture transfer
Анотація (укр):
У роботі проведений аналіз тепло- та вологообміну у неоднорідних пористих матеріалах, котрі використовуються при будівництві споруд різноманітного призначення.
Анотація (англ):
The paper analyzes the hyperbolic models in the analysis of heat and moisture exchange in inhomogeneous porous materials used for the constructions of various purposes.
Публікатор:
Київський національний університет будівництва і архітектури
Назва журналу, номер, рік випуску (укр):
Опір матеріалів і теорія споруд, 2024, номер 113
Назва журналу, номер, рік випуску (англ):
Strength of Materials and Theory of Structures, 2024, number 113
Мова статті:
English
Формат документа:
application/pdf
Документ:
Дата публікації:
26 December 2024
Номер збірника:
Університет автора:
Kyiv National University of Construction and Architecture avenue Povitrianykh syl 31, Kyiv, Ukraine, 03037; National Aviation University Lubomyr Huzar avenue,1, Kyiv, Ukraine, 03058
References:
- Jean Baptiste Joseph Baron Fourier. Analytical Theory of Heat / Jean Baptiste Joseph Baron Fourier. – [S. l.]: Creative Media Partners, LLC, 2018. – P. 516.
- Coleman B. D. On the reciprocal relations of onsager// The Journal of Chemical Physics. – 1960. – Vol. 33, no. 1. – P. 28–31.
- Second sound in solid helium/ C. C. Ackerman [et al.] // Physical Review Letters. – 1966. – Vol. 16, no. 18. – P. 789–791.
- Ackerman C. C., Guyer R. A. Temperature pulses in dielectric solids // Annals of Physics. – 1968. – Vol. 50, no. 1. – P. 128–185.
- Smith G. D. Numerical solution of partial differential equations: Finite difference methods / G. D. Smith. – 3rd ed. – Oxford [Oxfordshire]: Clarendon Press, 1985. – 337 p.
- Ghia U., Ghia K. N., Shin C. T. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method // Journal of Computational Physics. – 1982. – Vol. 48, no. 3. – P. 387–411.
- Ames W. F. Numerical methods for partial differential equations / William F. Ames. – [S. l.]: Elsevier Science & Technology Books, 2014. – P. 380.
- Some aspects of diffusion theory/ ed. by A. Pignedoli. – Berlin, Heidelberg: Springer Berlin Heidelberg, 2011.
- Bright T. J., Zhang Z. M. common misperceptions of the hyperbolic heat equation// Journal of Thermophysics and Heat Transfer. – 2009. – Vol. 23, no. 3. – P. 601–607.
- Thermal conductance of buckled carbon nanotubes [Electronic resource] / Fumio Nishimura [et al.] // Japanese Journal of Applied Physics. – 2012. – Vol. 51, no. 1R. – P. 015102.
- Bai C., Lavine A. S. On hyperbolic heat conduction and the second law of thermodynamics// Journal of Heat Transfer. – 1995. – Vol. 117, no. 2. – P. 256–263.
- Josep M. Porr`a, Jaume Masoliver, George H. Weiss. When the telegrapher's equation furnishes a better approximation to the transport equation than the diffusion approximation// Physical Review E. – 1997. – Vol. 55, no. 6. – P. 7771–7774.
- Körner C., Bergmann H. W. The physical defects of the hyperbolic heat conduction equation// Applied Physics A: Materials Science & Processing. – 1998. – Vol. 67, no. 4. – P. 397–401.
- Guyer R. A. , Krumhansl J. A. Thermal conductivity, second sound, and phonon hydrodynamic phenomena in nonmetallic crystals // Physical Review. – 1966. – Vol. 148, no. 2. – P. 778–788.
- Guyer R. A., Krumhansl J. A. Solution of the linearized phonon Boltzmann equation // Physical Review. – 1966. – Vol. 148, no. 2. – P. 766–778.
- An extended thermodynamic model of transient heat conduction at sub-continuum scales/ G. Lebon [et al.] // Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. – 2011. – Vol. 467, no. 2135. – P. 3241–3256.
- Thermal conductivity spectroscopy technique to measure phonon mean free paths/ A. J. Minnich [et al.] // Physical Review Letters. – 2011. – Vol. 107, no. 9.
- Interfacial thermal resistance: Past, present, and future / Jie Chen [et al.] // Reviews of Modern Physics. – 2022. – Vol. 94, no. 2.
- Chen G. Ballistic-diffusive heat-conduction equations // Physical Review Letters. – 2001. – Vol. 86, no. 11. – P. 2297–2300.
- Chen G. Non-Fourier phonon heat conduction at the microscale and nanoscale// Nature Reviews Physics. – 2021. – Vol. 3, no. 8. – P. 555–569.
- Yujie Zhang, Wenjing Ye. Modified ballistic–diffusive equations for transient non-continuum heat conduction // International Journal of Heat and Mass Transfer. – 2015. – Vol. 83. – P. 51–63.
- Exceptional ballistic transport in epitaxial graphene nanoribbons/ Jens Baringhaus [et al.] // Nature. – 2014. – Vol. 506, no. 7488. – P. 349–354.
- Enhanced thermoelectric performance of rough silicon nanowires / Allon I. Hochbaum [et al.] // Nature. – 2008. – Vol. 451, no. 7175. – P. 163–167. –
- Silicon nanowires as efficient thermoelectric materials / Akram I. Boukai [et al.] // Nature. – 2008. – Vol. 451, no. 7175. – P. 168–171.
- Electron-phonon coupling in the metallic elements Al, Au, Na, and Nb: A first-principles study / R. Bauer [et al.] // Physical Review B. – 1998. – Vol. 57, no. 18. – P. 11276–11282.
- Maldovan M. Transition between ballistic and diffusive heat transport regimes in silicon materials // Applied Physics Letters. – 2012. – Vol. 101, no. 11. – P. 113110.
- Cahill D. G. Thermal conductivity measurement from 30 to 750 K: the 3ω method // Review of Scientific Instruments. – 1990. – Т. 61, № 2. – С. 802–808.
- Deviation from the Fourier law in room-temperature heat pulse experiments / Soma Both [et al.] // Journal of Non-Equilibrium Thermodynamics. – 2016. – Vol. 41, no. 1.
- Tang D.W., Araki N. Non-fourier heat condution behavior in finite mediums under pulse surface heating // Materials Science and Engineering: A. – 2000. – Vol. 292, no. 2. – P. 173–178.
- Funktsionalʹnyy analiz teploprovidnosti ta vyazkosti kvazitverdykh kapilyarno-porystykh til za zminnykh parametriv povitryanoho seredovyshcha pry muzeynomu zberihanni [Functional analysis of thermal conductivity and viscosity of quasi-solid capillary-porous bodies under varying air environment conditions during museum storage] / Volodymyr Dovhaliuk [et al.] // Ventilation, Illumination and Heat Gas Supply. – 2020. – Vol. 34. – P. 7–15.
- Termodynamichnyy analiz tverdinnya pasto- y ridynopodibnykh elementiv muzeynykh eksponativ pid vplyvom mikroklimatychnykh umov prymishchennya [Thermodynamic analysis of hardening paste- and liquid-like elements of museum exhibits under the Influence of microclimatic conditions in a room] / Volodymyr Dovhaliuk [et al.] // Ventilation, Illumination and Heat Gas Supply. – 2020. – Vol. 34. – P. 16–28.
- Yurii Chovniuk, Anna Moskvitina, Mariia Shyshyna, Serhii Rybachov, Olha Mykhailyk. Optimization of heat transfer processes in enclosing structures of architectural monuments located outside urban agglomeration //ENGINEERING FOR RURAL DEVELOPMENT. – 2024. – Vol. 23. – P.615–622.
- Chovniuk Y., Moskvitina A., Shyshyna M., Kravchyuk V. Hysteresis curves analysis in the processes of heat and moisture conductivity of textiles’ nanosurfaces.//Theoretical foundations of engineering. Tasks and problems collective monograph. Іnternational Science Group. – Boston : Primedia eLaunch, – 2021. – Р. 75-91.
- The fractal scale-invariant structure of a temporal hierarchy in the relaxation and energy dissipation processes in a visco-elastic/capillary-porous medium/ Yuriy Chоvniuk [et al.]// Strength of Materials and Theory of Structures. – 2023. – No. 110. – P. 277–293.
- Elaine P. Scott, Muluken Tilahun, Brian Vick. The question of thermal waves in heterogeneous and biological materials// Journal of Biomechanical Engineering. – 2009. – Vol. 131, no. 7.
- Kovács R., Ván P. Generalized heat conduction in heat pulse experiments // International Journal of Heat and Mass Transfer. – 2015. – Vol. 83. – P. 613–620.
- Ván P., Fülöp T. Universality in heat conduction theory: weakly nonlocal thermodynamics // Annalen der Physik. – 2012. – Vol. 524, no. 8. – P. 470–478.
- Baehr H. D., Stephan К. Heat and Mass Transfer. – Berlin, Heidelberg : Springer Berlin Heidelberg, 1998.
- Raju K. S. N. Fluid Mechanics, Heat Transfer, and Mass Transfer. – Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011.
- Dattoli G. Generalized polynomials, operational identities and their applications // Journal of Computational and Applied Mathematics. – 2000. – Vol. 118, no. 1-2. – P. 111–123.
- Guyer-Krumhansl–type heat conduction at room temperature [Electronic resource] / P. Ván [et al.] // EPL (Europhysics Letters). – 2017. – Vol. 118, no. 5. – P. 50005.
- Mashoof M, Refahi Sheikhani A, Saberi Naja H. Stability analysis of distributed order Hilfer-Prabhakar differential equations // Hacettepe Journal of Mathematics and Statistics. – 2018. – Vol. 47, no. 2. – P. 299–315.
- Kaminski W. Hyperbolic heat conduction equation for materials with a nonhomogeneous inner structure // Journal of Heat Transfer. – 1990. – Vol. 112, no. 3. – P. 555–560.
- Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity / W. J. Parker [et al.] // Journal of Applied Physics. – 1961. – Vol. 32, no. 9. – P. 1679–1684.
- Dattoli G., Germano B., Ricci P. E. Comments on monomiality, ordinary polynomials and associated bi-orthogonal functions // Applied Mathematics and Computation. – 2004. – Vol. 154, no. 1. – P. 219–227.
- Gould H. W., Hopper A. T. Operational formulas connected with two generalizations of Hermite polynomials // Duke Mathematical Journal. – 1962. – Vol. 29, no. 1. – P. 51–63.
- Haimo D. T., Markett C. A representation theory for solutions of a higher order heat equation, II // Journal of Mathematical Analysis and Applications. – 1992. – Vol. 168, no. 2. – P. 289–305.
- Experimental Evidence of Hyperbolic Heat Conduction in Processed Meat/ K. Mitra [et al.] // Journal of Heat Transfer. – 1995. – Vol. 117, no. 3. – P. 568–573.
- Herwig H., Beckert K. Fourier Versus Non-Fourier Heat Conduction in Materials With a Nonhomogeneous Inner Structure // Journal of Heat Transfer. – 1999. – Vol. 122, no. 2. – P. 363–365.
- Roetzel W., Putra N., Das S. K. Experiment and analysis for non-Fourier conduction in materials with non-homogeneous inner structure// International Journal of Thermal Sciences. – 2003. – Vol. 42, no. 6. – P. 541–552.