ВИЗНАЧЕННЯ G-IНТЕГРАЛА НА ОСНОВІ ОБЧИСЛЕННЯ ІНВАРІАНТНИХ ОБ’ЄМНИХ ІНТЕГРАЛІВ МЕТОДОМ РЕАКЦІЙ
Заголовок (російською):
ОПРЕДЕЛЕНИЕ G НА ОСНОВЕ ВЫЧИСЛЕНИЯ ИНВАРИАНТНЫХ ОБЪЕМНЫХ ИНТЕГРАЛОВ МЕТОДОМ РЕАКЦИЙ
Заголовок (англійською):
DEFINITION G BASED ON CALCULATION OF INVARIANT VOLUME INTEGRALS BY REACTION METHOD
Автор(и):
О.О. Шкриль
Автор(и) (англ):
Shkril’ А.
Ключові слова (укр):
напіваналітичний метод скінченних елементів (НМСЕ), параметр Гріффітца, метод реакцій
Ключові слова (рус):
полуаналитического метод конечных элементов, параметр Гриффитца, метод реакций
Ключові слова (англ):
semi-analytical finite element method, Griffitz parameter, reaction method
Анотація (укр):
На основі обчислення інваріантних об’ємних інтегралів методом реакцій, розроблено метод визначення параметра Гріффітца G в дискретних моделях методу скінченних елементів (МСЕ). Розв’язані тестові задачі. Отримані результати підтверджують ефективність методики.
Анотація (рус):
На основе вычисления инвариантных объемных интегралов методом реакций, разработан метод определения параметра Гриффитца G в дискретных моделях метода конечных элементов (МКЭ). Решены тестовые задачи. Полученные результаты подтверждают эффективность методики.
Анотація (англ):
Among the methods for determining the parameters of fracture mechanics on the basis of FEM the most widely used energy approaches. To date, numerous studies have been carried out to demonstrate the effectiveness of the reaction method in implementing the energy approach. However, in these studies, the question of determining the J-integral is considered. It is generally known that in the presence of bulk forces of different gauge, the J-integral can not be used to assess the crack resistance. Therefore, in this paper, a generalization of the reaction method is carried out to determine the Griffiths criterion, which allows us to assess the crack resistance under the influence of bulk forces of different nature.
In determining the work of external forces and the potential energy of deformation are determined by known formulas in terms of displacement. For this purpose, in discrete models, a spatial body with a crack in two equilibrium states is considered. The first state corresponds to the initial position of the crack, the second to the new position obtained with the growth of the crack for one step of the grid with the emergence of a new surface of the crack. Existing methods for calculating G in discrete models allocate a certain region around the crack front. Therefore, by analogy, the definition formula for a closed volume around a crack of arbitrary configuration was derived. With the invariance of the stiffness matrix of the volume fragment in both states under consideration, the definition formula acquires a simplified form. Approbation of the developed technique was carried out on the test problem of stretching an infinite plate with a central crack. The calculation was carried out both in the entire discrete model and in a closed volume of different dimensions, covering the peak of the crack. The obtained results of calculating the parameter in the complementary region and for the entire discrete model coincide. Moreover, this property is preserved both in surface and volumetric forces. Next, the scheme of application of the developed method for determining the parameter for three-dimensional problems based on the semi-analytic method of finite elements was considered. To test the scheme, a test task was performed on the definition of G in a prismatic body with a lateral incision loaded with load distributed along the face. Distribution G, obtained with the use of three-dimensional FEM and SFEM, coincides with the results obtained by other methods.
Публікатор:
Київський національний університет будівництва і архітектури
Назва журналу, номер, рік випуску (укр):
Опір матеріалів і теорія споруд, 2017, номер 98
Назва журналу, номер, рік випуску (рус):
Сопротивление материалов и теория сооружений, 2017, номер 98
Назва журналу, номер, рік випуску (англ):
Strength of Materials and Theory of Structures, 2017, number 98
Мова статті:
Українська
Формат документа:
application/pdf
Документ:
Дата публікації:
04 January 2018
Номер збірника:
Університет автора:
Київський національний університет будівництва і архітектури
Литература:
1. Баженов В.А., Гуляр А.И., Пискунов С.О., Максимюк Ю.В., Шкрыль А.А. Решение линейных и нелинейных пространственных задач механики разрушения на основе полуаналитического метода конечных элементов. Сообщение 2. Методика определения инвариантного J-интеграла в дискретных моделях МКЭ // Проблемы прочности. – 2011. – № 2.– С. 17–32.2. Баженов В.А., Гуляр А.И., Пискунов С.О., Сахаров А.С., Шкрыль А.А. Метод определения инвариантного J-интеграла в конечно-элементных моделях призматических тел // Прикладная механика. 2008, 44, №12. – С. 70-82.3. Баженов В.А., Гуляр О.І., Пискунов С.О., Шкриль О.О.Богдан Д.В Модифікований метод реакцій для визначення J-інтеграла в задачах пружнопластичного деформування просторових призматичнсих тіл //Опір матеріалів і теорія споруд: наук.-тех. збірн. – К.: КНУБА, 2011. – Вип. 88. – С. 18-234. Броек Д. Основы механики разрушения: Пер. с англ. – М.: Высш. шк., 1980. – 368 с.5. Морозов Е.М., Никишков Г.П. Метод конечных элементов в механике разрушения. – М.: Наука, 2010. – 256 с.6. Черепанов Г.П. Механика хрупкого разрушения. – М.: Наука, 1974. – 640с.7. Anderson T.L. Fracture mechanics: Fundamentals and Applications, Third Edition.-CRC Press, 2005. - 640p.
References:
1. Bazhenov V.A., Gulyar A.I., Piskunov S.O., Maksimyuk YU.V., Shkryl' A.A. Resheniye lineynykh i nelineynykh prostranstvennykh zadach mekhaniki razrusheniya na osnove poluanaliticheskogo metoda konechnykh elementov.( linear and nonlinear spatial problems of fracture mechanics on the basis of a semi-analytic finite element method) Soobshcheniye 2. Metodika opredeleniya invariantnogo J-integrala v diskretnykh modelyakh MKE(The method of determining the invariant J-integral in discrete models of FEM) / // Problemy prochnosti. – 2011. – № 2.– S. 17–32.2. Bazhenov V.A., Gulyar A.I., Piskunov S.O., Sakharov A.S., Shkryl' A.A. Metod opredeleniya invariantnogo J-integrala v konechno-elementnykh modelyakh prizmaticheskikh tel(Method for determining the invariant J-integral in finite-element models of prismatic bodies) // Prikladnaya mekhanika. 2008, 44, №12– s.70-82.3. Bazhenov V.A., Gulyar O.Í., Piskunov S.O., Shkril' O.O.Bogdan D.V Modifíkovaniy metod reaktsíy dlya viznachennya J-íntegrala v zadachakh pruzhnoplastichnogo deformuvannya prostorovikh prizmatichnsikh tíl (Modified reaction method for determination of J-integral in problems of elastoplastic deformation of spatial prismatic elements)//Opír materíalív í teoríya sporud: nauk.-tekh. zbírn. – K.: KNUBA, 2011. – Vip. 88. – S.18-234. Broyek D. Osnovy mekhaniki razrusheniya(Fundamentals of the mechanics of destruction): Per. s angl. – M.: Vyssh. shk., 1980. – 368 s.5. Morozov Ye.M., Nikishkov G.P. Metod konechnykh elementov v mekhanike razrusheniya(The finite element method in fracture mechanics). – M.: “Nauka”, 2010. – 256 s.6. Cherepanov G.P. Mekhanika khrupkogo razrusheniya(Mechanics of brittle fracture). – M.: Nauka, 1974. – 640s.7. Anderson T.L. Fracture mechanics: Fundamentals and Applications, Third Edition.-CRC Press, 2005. - 640p.