МЕТОДИКА ВИЗНАЧЕННЯ ПАРАМЕТРА J* В ДИСКРЕТНИХ МОДЕЛЯХ МЕТОДУ СКІНЧЕНИХ ЕЛЕМЕНТІВ
Заголовок (російською):
МЕТОДИКА ОПРЕДЕЛЕНИЯ ПАРАМЕТРА J* В ДИСКРЕТНЫХ МОДЕЛЯХ МЕТОДА КОНЕЧНЫХ ЭЛЕМЕНТОВ
Заголовок (англійською):
METHODOLOGY OF DETERMINING OF PARAMETER J* IN DISCRETE MODELS OF FINITE ELEMENTS METHOD
Автор(и):
Баженов В.А.
Пискунов С.О.
Шкриль О.О.
Автор(и) (англ):
V.A. Bazhenov
S.О. Pyskunov
О.О. Shkryl’
Ключові слова (укр):
механіка руйнування, напіваналітичний метод скінчених елементів, параметр , метод реакцій
Ключові слова (рус):
механика разрушения, полуаналитический метод конечных элементов, параметр , метод реакций
Ключові слова (англ):
fracture mechanic, semi-analytical finite element method, parametr, reaction method
Анотація (укр):
На основі методу реакцій розроблена методика обчислення параметру методом зміщення підобластей в дискретних моделях методу скінчених елементів. Проведено розв’язання тестових задач. Отримані результати підтверджують ефективність методики.
Анотація (рус):
На основе метода реакций разработана методика определения параметра методом смещения подобластей в дискретных моделях метода конечных элементов. Проведено решение тестовых задач. Полученные результаты подтверждают эффективность методики.
Анотація (англ):
Fracture mechanics’ parameters are used when the stress-strain state in the vicinity of the crack tip being evaluated. Energy methods have been most developed in determining of the fracture mechanics parameters to date. A method of reactions has been developed in earlier works of authors that makes it possible to determine the J-integral in discrete models of the finite element method. However, the use of the J-integral is possible in the absence of voluminous forces. The case of voluminous forces caused by the action of temperature loads is the exception of it. is used as the fracture parameter in this case. A new method for calculating of the parameter is developed in this paper, based on the reaction method. The implementation of this method involves the displacement of the subregions of integration into one finite element. Approbation of the developed approach was carried out on the test problem of deformation of a rectangular plate with a central crack. The obtained results showed that under the action of both surface and voluminous forces on the plate, the values of the parameter coincide with the standard solution. Further, the developed approach was implemented for spatial problems, using discrete models of a semi-analytic finite element method. The determination of is performed in this case at separate points of the crack front for each of which separate volumes of integration and corresponding subregions are stand out. Approbation of the technique in the spatial bodies was carried out on the test problem of the bending of a prismatic body with a lateral notch. Then the developed method was tested on two test problems in the presence of volume forces caused by the action of temperature loads. The results coincided with the values of obtained by other authors with the help of the finite element software ANSYS. Thus, the method of determining of the parameter , developed on the basis of the reaction method, makes it possible to effectively evaluate the stress-strain state in bodies with cracks under the action of surface and voluminous forces.
Публікатор:
Київський національний університет будівництва і архітектури
Назва журналу, номер, рік випуску (укр):
Опір матеріалів і теорія споруд, 2017, номер 99
Назва журналу, номер, рік випуску (рус):
Сопротивление материалов и теория сооружений, 2017, номер 99
Назва журналу, номер, рік випуску (англ):
Strength of Materials and Theory of Structures, 2017, number 99
Мова статті:
English
Формат документа:
application/pdf
Документ:
Дата публікації:
25 December 2017
Номер збірника:
Університет автора:
Київський національний університет будівництва і архітектури
References:
1. Bazhenov V.A., Gulyar A.I., Piskunov S.O., Maksimyuk Yu.V., Shkryl' A.A. Solving linear and nonlinear three-dimensional problems of fracture mechanics by a semi-analytic finite element method. Part 2. A procedure for computing the invariant J-integral in FEM discrete models – Strength of Materials. – 2011. – 43.– P. 17–32. https://doi.org/10.1007/s11223-011-9278-92. Bazhenov V.A., Gulyar A.I., Piskunov S.O., Sakharov A.S., Shkryl' A.A. The method to evaluate the invariant J-integral in finite element models of prizmatic bodies – International Applied Mechanics. – 2008. – V.44. – Issue 12. – PP 1378–1388. https://doi.org/10.1007/s10778-009-0154-23. Broyek D. The foundation of fracture mechanics: Transl. form Engl. – Moscow: Vyssh. shk., 1980. - 368 p. [In Russian] 4. Bazhenov, V.A., Sakharov, A.S., Maksimyuk, Y.V., Shkryl’ A.A. A Modified Method for Evaluating the Invariant J-Integral in Finite-Element Models of Prismatic Bodies – International Applied Mechanics. – 2016. – V.52. – Issue 2. – PP. 140-146. https://doi.org/10.1007/s10778-016-0741-y5. Morozov Ye.M., Nikishkov G.P. Finite element method in fracture mechanic problems – Moscow: "Nauka" , 2010. - 256 p. [In Russian]6. Morozov Ye.M. ANSYS for Engineer’s using. Fracture mechanics [Morozov Ye.M., Muyzemnek A.Yu., Shadskiy A.S.] – Moscow : LENAND, 2008. – 453 p. [In Russian]7. Piskunov S.O., Shkril' O.O., Mitsyuk S.V. The direct method for estimation of stress intensity factor for prizmatic and nonclosed rotation bodies under static loading condition – Opir materíalív í teoríya sporud. – 2016. – No. 97. – P. 3-14. [In Ukrainian]8. Shkril' O.O. Estimation of G basing of calculation of invariant volume integrals using of reaction method – Opir materíalív í teoríya sporud. – 2017 – No. 98. – P.31-42. [In Ukrainian]9. Anderson T.L. Fracture mechanics: Fundamentals and Applications, Third Edition.-CRC Press, 2005. - 640p.