COEXISTING REGIMES IN HYSTERESIS ZONE IN PLATFORM-VIBRATOR WITH SHOCK

Заголовок (англійською): 
COEXISTING REGIMES IN HYSTERESIS ZONE IN PLATFORM-VIBRATOR WITH SHOCK
Автор(и): 
V.A. Bazhenov
O.S. Pogorelova
T.G. Postnikova
Автор(и) (англ): 
V.A. Bazhenov
O.S. Pogorelova
T.G. Postnikova
Ключові слова (укр): 
віброударний майданчик, форма з бетоном, гумова прокладка, частота збудження, технологічна маса, параметри жорсткості, співіснуючі режими
Ключові слова (англ): 
platform-vibrator, vibro-impact, mold with concrete, technological mass, coexisting modes, control parameter, stiffness parameters
Анотація (укр): 
Процеси формування є одними з найважливіших у виробництві залізобетонних конструкцій. Вібраційні та ударно-вібраційні технології ущільнення бетонних сумішей та формування бетонних виробів мають найбільше поширення у будівельній промисловості. Тому питання оптимізації режимів вібрації, правильного вибору вібраційного обладнання не втрачають своєї актуальності. У статті обговорюється динамічна поведінка ударно-вібраційної низькочастотної резонансної машини – віброударного майданчика. Його математична модель відповідає двох масовій системі з двома ступнями вільності з м’яким ударом, який моделюється нелінійною інтерактивною контактною силою відповідно до квазістатичної контактної теорії Герца. Зміна провідних параметрів може, з одного боку, покращити процес ущільнення, але, з іншого боку, привести до небажаних коливальних режимів. У статті обговорюються такі провідні параметри, як частота збудження, технологічна маса форми з бетоном та параметри жорсткості пружних елементів. Зменшення частоти збудження, маси форми, жорсткості віброізолюючої пружини та збільшення модуля пружності Юнга гумової прокладки забезпечують збільшення ударного прискорення, що покращує процес ущільнення. Однак при таких змінах параметрів виникають співіснуючі режими, багато з яких є небажаними. Це є режими з великою періодичністю та кількома ударами за цикл, хаотичні режими та перехідний хаос. Діагностика режиму проводиться традиційними чисельними засобами, а саме побудовою часових рядів (реалізацій сигналу), фазових траєкторій, перерізів Пуанкаре, спектрів Фур'є та обчисленням найбільшого показника Ляпунова. Сподіваємось, що цей аналіз може допомогти уникнути небажаної поведінки віброударного майданчика під час проєктування та експлуатації. Виклад супроводжується багатьма графіками та таблицею.
Анотація (англ): 
Molding processes are among the most important in the manufacture of reinforced concrete structures. Vibration and shock-vibration technologies for concrete mixtures compaction and concrete products molding have the greatest distribution in the construction industry. Therefore, the issues of optimizing vibration modes, correct choice of vibration equipment do not lose their relevance. The article discusses the dynamical behavior of a shock-vibrational low-frequency resonant machine. Its mathematical model corresponds to a two-body 2-DOF vibro-impact system with a soft impact, which is simulated by a nonlinear interactive contact force in accordance with Hertz’s quasi-static contact theory. Changing the control parameters can, on the one hand, improve the compaction process, but, on the other hand, lead to unwanted vibrational modes. The article discusses such control parameters as the exciting frequency, the technological mass of the mold with concrete, and the stiffness parameters of elastic elements. Decreasing the exciting frequency, the mold mass, the vibro-isolating spring stiffness and increasing the Young’s modulus of elasticity of the rubber gasket provide an increase in impact acceleration, which improves the compaction process. However, with such changes in the parameters, coexisting regimes arise, many of which are undesirable. These are modes with a large periodicity and several impacts per cycle, chaotic modes, and transient chaos. The regime diagnostics is performed by traditional numerical means, namely, by constructing time series, phase trajectories, Poincaré maps, Fourier spectra, and the largest Lyapunov exponent. We hope that this analysis can help avoid unwanted platform-vibrator behaviour during design and operation. The presentation is accompanied by many graphs and a table.
Публікатор: 
Київський національний університет будівництва і архітектури
Назва журналу, номер, рік випуску (укр): 
Опір матеріалів і теорія споруд, 2021, номер 107
Назва журналу, номер, рік випуску (англ): 
Strength of Materials and Theory of Structures, 2021, issue 107
Мова статті: 
English
Формат документа: 
application/pdf
Документ: 
Дата публікації: 
27 December 2021
Номер збірника: 
Університет автора: 
Kyiv National University of Construction and Architecture 31, Povitroflotskyave, Kyiv, Ukraine, 03680
Литература: 
  1. Nazarenko, І. І. Applied problems of the vibration systems theory: Textbook (2nd edition). Kyiv. Publishing House “Word”.2010. (in Ukrainian)
  2. Vasiliev, V.G. Vyibor optimalnyih parametrov vibratsionnogo formovanii Zhelezobetonnyih izdeliy (Selection of optimal parameters of vibration molding of reinforced concrete products). Dig. J. Technique and Technology of Transport, S13. 2019. (in Russian).
  3. Nazarenko, I.I., et al. Investigation of vibration machine movement with a multimode oscillation spectrum. Eastern-European Journal of Enterprise Technologies.2017. 6 (1), 28-36.
  4. Nazarenko, I.I., et al. Development of energy-efficient vibration machines for the building-and-contruction industry. Przeglad Elektrotechniczny. 2019. 1(4), 55-61.
  5. Gusev, B.V., Fayvusovich A.S. Technological mechanics of vibrating concrete mixes. М. 2002. 252 с. (in Russian)
  6. Sharapov, R., &Vasiliev, V. Analysis of the spectrum distribution of oscillation amplitudes of the concrete mix at shock vibration molding. In MATEC Web of Conferences (Vol. 117, p. 00152). EDP Sciences.2017. (in Russian)
  7. Basarab V.A. Investigation of the poly-frequency mode of oscillations of the electromagnetic shock-vibration system. Scientific Bulletin of the National University of Life and Environmental Sciences of Ukraine. Series: Technology and energy of agro-industrial complex. (241), 2016, P.101-110. (in Ukrainian)
  8. Gusev, B.V., &Zazimko, V.G. Vibration Technology of Concrete. Budivelnik, Kiev. (1991). (in Russian)
  9. Basarab, V.A. Investigation of the dynamic parameters of a vibration machine for building mixes compaction.  Int Appl Mech 56. 2020. P.750–761
  10. Borshchevsky, A. A., &Ilyin, A. S. Mechanical equipment of enterprises for the production of building materials and products. Moscow, Alliance. 2009. (in Russian)
  11. Gusev, B. V., et al.. Recommendations on Vibration Forming of Reinforced Concrete.(1986) (in Russian)
  12. Bazhenov, V. A., Pogorelova, O. S., &Postnikova, T. G. Nonlinear Events in Dynamic Behavior of Unusual Vibro-impact System: Numerical studies of the dynamic behavior of the platform-vibrator with shock, LAP LAMBERT Academic Publ. GmbH and Co. KG Dudweiler, Germany. 2021.
  13. Kapitaniak T., Bishop S. R. The illustrated dictionary of nonlinear dynamics and chaos. – Wiley, 1999.
  14. Bazhenov V., Pogorelova O., Postnikova T.G. Creation of mathematical model of platform-vibrator with shock. designed for concrete products compaction and molding //Strength of Materials and Theory of Structures: Scientific-and-technical collected articles. – 2020. – №. 104. – С. 103-116.
  15. Bazhenov V.A., Pogorelova O.S., Postnikova T.G. Transient Chaos in Platform-vibrator with Shock // Strength of Materials and Theory of Structures: Scientific-and-technical collected articles. – K.: KNUCA, 2021. – Issue 106. – P 22-40.
  16. Bazhenov V.A., Pogorelova O.S., Postnikova T.G. Crisis-induced Intermittency and Other Nonlinear Dynamics Phenomena in Vibro-impact System with Soft Impact. 11 Chapter in book “Nonlinear Mechanics of Complex Structures: From Theory to Engineering Applications” (Edited by Prof. Altenbach H., Prof. Amabili M., Prof. Mikhlin Yu.) in the Springer Book Series “Advanced Structured Materials”. 2021.Book 157. Springer International Publishing. ISBN: 978-3-030-75889-9 (print), 978-3-030-75890-5 (eBook) DOI 10.1007/978-3-030-75890-5
  17. Goldsmith W. Impact: The Theory and Physical Behavior of Colliding Solids. Edward Arnold Ltd. – 1960.
  18. Johnson K. L. Contact mechanics.Сambridgeuniv //Press. Cambridge. – 1985. – Т. 95. – С. 365.
 
References: 
  1. Nazarenko, І. І. Applied problems of the vibration systems theory: Textbook (2nd edition). Kyiv. Publishing House “Word”.2010. (in Ukrainian)
  2. Vasiliev, V.G. Vyibor optimalnyih parametrov vibratsionnogo formovanii Zhelezobetonnyih izdeliy (Selection of optimal parameters of vibration molding of reinforced concrete products). Dig. J. Technique and Technology of Transport, S13. 2019. (in Russian).
  3. Nazarenko, I.I., et al. Investigation of vibration machine movement with a multimode oscillation spectrum. Eastern-European Journal of Enterprise Technologies.2017. 6 (1), 28-36.
  4. Nazarenko, I.I., et al. Development of energy-efficient vibration machines for the building-and-contruction industry. Przeglad Elektrotechniczny. 2019. 1(4), 55-61.
  5. Gusev, B.V., Fayvusovich A.S. Technological mechanics of vibrating concrete mixes. М. 2002. 252 с. (in Russian)
  6. Sharapov, R., &Vasiliev, V. Analysis of the spectrum distribution of oscillation amplitudes of the concrete mix at shock vibration molding. In MATEC Web of Conferences (Vol. 117, p. 00152). EDP Sciences.2017. (in Russian)
  7. Basarab V.A. Investigation of the poly-frequency mode of oscillations of the electromagnetic shock-vibration system. Scientific Bulletin of the National University of Life and Environmental Sciences of Ukraine. Series: Technology and energy of agro-industrial complex. (241), 2016, P.101-110. (in Ukrainian)
  8. Gusev, B.V., &Zazimko, V.G. Vibration Technology of Concrete. Budivelnik, Kiev. (1991). (in Russian)
  9. Basarab, V.A. Investigation of the dynamic parameters of a vibration machine for building mixes compaction.  Int Appl Mech 56. 2020. P.750–761
  10. Borshchevsky, A. A., &Ilyin, A. S. Mechanical equipment of enterprises for the production of building materials and products. Moscow, Alliance. 2009. (in Russian)
  11. Gusev, B. V., et al.. Recommendations on Vibration Forming of Reinforced Concrete.(1986) (in Russian)
  12. Bazhenov, V. A., Pogorelova, O. S., &Postnikova, T. G. Nonlinear Events in Dynamic Behavior of Unusual Vibro-impact System: Numerical studies of the dynamic behavior of the platform-vibrator with shock, LAP LAMBERT Academic Publ. GmbH and Co. KG Dudweiler, Germany. 2021.
  13. Kapitaniak T., Bishop S. R. The illustrated dictionary of nonlinear dynamics and chaos. – Wiley, 1999.
  14. Bazhenov V., Pogorelova O., Postnikova T.G. Creation of mathematical model of platform-vibrator with shock. designed for concrete products compaction and molding //Strength of Materials and Theory of Structures: Scientific-and-technical collected articles. – 2020. – №. 104. – С. 103-116.
  15. Bazhenov V.A., Pogorelova O.S., Postnikova T.G. Transient Chaos in Platform-vibrator with Shock // Strength of Materials and Theory of Structures: Scientific-and-technical collected articles. – K.: KNUCA, 2021. – Issue 106. – P 22-40.
  16. Bazhenov V.A., Pogorelova O.S., Postnikova T.G. Crisis-induced Intermittency and Other Nonlinear Dynamics Phenomena in Vibro-impact System with Soft Impact. 11 Chapter in book “Nonlinear Mechanics of Complex Structures: From Theory to Engineering Applications” (Edited by Prof. Altenbach H., Prof. Amabili M., Prof. Mikhlin Yu.) in the Springer Book Series “Advanced Structured Materials”. 2021.Book 157. Springer International Publishing. ISBN: 978-3-030-75889-9 (print), 978-3-030-75890-5 (eBook) DOI 10.1007/978-3-030-75890-5
  17. Goldsmith W. Impact: The Theory and Physical Behavior of Colliding Solids. Edward Arnold Ltd. – 1960.
  18. Johnson K. L. Contact mechanics.Сambridgeuniv //Press. Cambridge. – 1985. – Т. 95. – С. 365.