Аналітичне розв'язання крайової задачі для балки Ейлера-Бернуллі за допомогою функцій Гріна

Заголовок (англійською): 
Analytical solution of the boundary value problem for Euler-Bernoullie beam using Green functions
Автор(и): 
Бондаренко Н.В.
Отрашевська В.В.
Автор(и) (англ): 
Bondarenko N.V.
Otrashevska V.V.
Ключові слова (укр): 
коливання балки, рівняння Ейлера-Бернуллі, функція Гріна, аналітичний розв’яок
Ключові слова (англ): 
beam oscillations, Euler-Bernoulli equation, Green's function, analytical solution
Анотація (укр): 
Аналіз динамічної поведінки балок є фундаментальною задачею в будівельній, транспортній та машинобудівній галузях, оскільки він відіграє ключову роль у забезпеченні безпеки, надійності та довговічності інженерних конструкцій. У роботі досліджується динамічна реакція простої опертої балки Ейлера-Бернуллі, на яку одночасно діють зосереджена сила та моментне навантаження. На відміну від більшості попередніх досліджень, де ці фактори розглядалися окремо, тут враховано їх сумісний вплив. Для розв’язання задачі застосовано метод функцій Гріна, що забезпечує отримання аналітичного розв’язку у замкненій формі. Такий підхід має низку суттєвих переваг: він дозволяє уникнути додаткового визначення власних значень і власних функцій, необхідних у методі розкладу в ряди, а також є універсальним інструментом для аналізу різних типів навантажень. Оскільки функція Гріна описує реакцію балки на локалізоване збурення, то будь-яке зовнішнє навантаження, представлене у вигляді інтеграла від дельта-функцій Дірака, може бути враховане через інтегральне згорткове перетворення. Зокрема, зосереджена сила моделюється дельта-функцією Дірака, а дія зосередженого моменту описується за допомогою її першої похідної. У результаті отримано аналітичний розв’язок крайової задачі Ейлера-Бернуллі у замкненій формі, що дозволяє не лише визначити реакцію балки, але й досліджувати поведінку балки за різних параметрів навантаження. Побудовані графіки ілюструють вплив різних значень навантажень на форму і характер конструкції. Отриманий аналітичний розв’язок може слугувати еталонною моделлю для перевірки чисельних методів, використовуватись у задачах оптимізації конструкцій, а також стати базою для подальших досліджень складніших систем із різними схемами закріплення та комбінованими навантаженнями.
Анотація (англ): 
Analysis of the dynamic behavior of beams is a fundamental task in the construction, transport and mechanical engineering industries, as it plays a key role in ensuring the safety, reliability and durability of engineering structures. The paper investigates the dynamic response of a simply supported Euler-Bernoulli beam, which is simultaneously subjected to a concentrated force and a moment load. Unlike most previous studies, where these factors were considered separately, their combined effect is taken into account here. To solve the problem, the Green's function method was used, which provides an analytical solution in closed form. This approach has a number of significant advantages: it allows you to avoid additional determination of eigenvalues and eigenfunctions, which are required in the series decomposition method, and is also a universal tool for analyzing various types of loads. Since the Green's function describes the response of a beam to a localized disturbance, any external load, represented as an integral of Dirac delta functions, can be taken into account through an integral convolution transformation. In particular, the concentrated force is modeled by the Dirac delta function, and the action of the concentrated moment is described by its first derivative. As a result, an analytical solution of the Euler-Bernoulli boundary value problem in a closed form is obtained, which allows not only to determine the response of the beam, but also to study the behavior of the beam under different load parameters. The constructed graphs illustrate the influence of different values of loads on the shape and nature of the structure. The obtained analytical solution can serve as a reference model for testing numerical methods, be used in structural optimization problems, and also become a basis for further research of more complex systems with different fastening schemes and combined loads.
Публікатор: 
Київський національний університет будівництва і архітектури
Назва журналу, номер, рік випуску (укр): 
Опір матеріалів і теорія споруд, 2025, номер 115
Назва журналу, номер, рік випуску (англ): 
Strength of Materials and Theory of Structures, 2025, number 115
Мова статті: 
Українська
Формат документа: 
application/pdf
Дата публікації: 
23 December 2025
Номер збірника: 
Університет автора: 
Київський національний університет будівництва і архітектури просп. Повітряних Сил, 31, м. Київ. 03037
Литература: 
 1.      Oni S.T., Ayankop-Andi E. On the response of a simply supported non-uniform Rayleigh beam subjected to traveling distributed loads. - J. Nigerian Math. Soc. - 2017. - Vol. 36. - No. 2. - P. 435–457.2.      Pasterer C.A., Tan C.A., Bergman L.A. A new method for calculating bending moment and shear force in moving load problems. - J. Appl. Mech. - 2001. - Vol. 68. - No. 2. -P. 252-259.3.      Fryba L. Vibration of Solids and Structures Under Moving Loads. - Noordhoff International, Groningen. - 1972.4.      Mutman U. Free vibration analysis of an Euler beam of variable width on the Winkler foundation using homotopy perturbation method. - Math. Probl. Eng. - 2013. - Issue 1. - P. 1–9.5.      Kozien M.S. Analytical Solutions of Excited Vibrations of a Beam with Application of Distribution. Acta physica polonica A. - 2013. - Vol. 123. - No. 6. - P. 1029-1033.6.      Weaver W., Jr. Timoshenko S. P., Young D.H. Vibration Problems in Engineering (5th ed.). - New York, NY: John Wiley & Sons., 1991. - 624 р.7.      Thomson W.T. Theory of Vibration with Applications, 4th Edition, Prentice Hall, Englewood Cliffs, NJ, 1993.8.      Hamada R. Dynamic analysis of a beam under a moving force: a double Laplace transform solution, Journal of Sound and Vibration. -Vol. 74. - 1981. - P. 221–233.9.      Al-Khatib M.J., Grysa K., Maciąg A. The method of solving polynomials in the beam vibration problem. - Journal of theoretical and applied mechanics, Warsaw. - Vol. 46. - 2008. - No. 2. - P. 347-366.10.    Nicholson J.W., Bergman L.A. Free vibration of combined dynamical systems. - American Society of Civil Engineers Journal of Engineering Mechanics. - Vol. 112. - 1986. - P. 1–13.11.    Yavaria A.,  Sarkanib S. On applications of generalized functions to the analysis of Euler–Bernoulli beam columns with jump discontinuities, International Journal of Mechanical Sciences. - Vol. 43. - Issue 6. - 2001. - P. 1543-1562.12.    Kukla S., Zamojska I. Application of the Green's function method in free vibration analysis of non-uniform beams. - Scientific Research of the Institute of Mathematics and Computer Science. Vol. 4. - Issue 1. - 2005. - P. 87-94.13.    Kukla S., Posiadala B. Green’s function approach to transverse vibrations of Euler-Bernoulli beams with attached oscillators. - Journal of Sound and Vibration. Vol. 252. -No. 1. - 2002. -P. 69–89.14.    Mehri B., Davar A., Rahmani O. Dynamic Green Function Solution of Beams Under a Moving Load with Different Boundary Conditions, Transaction B: Mechanical Engineering. - Vol. 16. - No. 3. - P. 273-279.15.    Abu-Hilal M. Forced vibration of Euler–Bernoulli beams by means of dynamic Green functions. - Journal of Sound and Vibration. - Vol. 267. - 2003. - P. 191–207.16.    Abu-Hilal M. Deflection of Beams by Means of Static Green Functions. - Universal Journal of Mechanical Engineering. -Vol. 4. - No. 2. - 2016. -P. 19-24.  
References: 
 
  1. Oni S.T., Ayankop-Andi E. On the response of a simply supported non-uniform Rayleigh beam subjected to traveling distributed loads. - J. Nigerian Math. Soc. - 2017. - Vol. 36. - No. 2. - P. 435–457.
  2. Pasterer C.A., Tan C.A., Bergman L.A. A new method for calculating bending moment and shear force in moving load problems. - J. Appl. Mech. - 2001. - Vol. 68. - No. 2. -P. 252-259.
  3. Fryba L. Vibration of Solids and Structures Under Moving Loads. - Noordhoff International, Groningen. - 1972.
  4. Mutman U. Free vibration analysis of an Euler beam of variable width on the Winkler foundation using homotopy perturbation method. - Math. Probl. Eng. - 2013. - Issue 1. - P. 1–9.
  5. Kozien M.S. Analytical Solutions of Excited Vibrations of a Beam with Application of Distribution. Acta physica polonica A. - 2013. - Vol. 123. - No. 6. - P. 1029-1033.
  6. Weaver W., Jr. Timoshenko S. P., Young D.H. Vibration Problems in Engineering (5th ed.). - New York, NY: John Wiley & Sons., 1991. - 624 р.
  7. Thomson W.T. Theory of Vibration with Applications, 4th Edition, Prentice Hall, Englewood Cliffs, NJ, 1993.
  8. Hamada R. Dynamic analysis of a beam under a moving force: a double Laplace transform solution, Journal of Sound and Vibration. -Vol. 74. - 1981. - P. 221–233.
  9. Al-Khatib M.J., Grysa K., Maciąg A. The method of solving polynomials in the beam vibration problem. - Journal of theoretical and applied mechanics, Warsaw. - Vol. 46. - 2008. - No. 2. - P. 347-366.
  10.  Nicholson J.W., Bergman L.A. Free vibration of combined dynamical systems. - American Society of Civil Engineers Journal of Engineering Mechanics. - Vol. 112. - 1986. - P. 1–13.
  11. Yavaria A.,  Sarkanib S. On applications of generalized functions to the analysis of Euler–Bernoulli beam columns with jump discontinuities, International Journal of Mechanical Sciences. - Vol. 43. - Issue 6. - 2001. - P. 1543-1562.
  12. Kukla S., Zamojska I. Application of the Green's function method in free vibration analysis of non-uniform beams. - Scientific Research of the Institute of Mathematics and Computer Science. Vol. 4. - Issue 1. - 2005. - P. 87-94.
  13. Kukla S., Posiadala B. Green’s function approach to transverse vibrations of Euler-Bernoulli beams with attached oscillators. - Journal of Sound and Vibration. Vol. 252. -No. 1. - 2002. -P. 69–89.
  14. Mehri B., Davar A., Rahmani O. Dynamic Green Function Solution of Beams Under a Moving Load with Different Boundary Conditions, Transaction B: Mechanical Engineering. - Vol. 16. - No. 3. - P. 273-279.
  15. Abu-Hilal M. Forced vibration of Euler–Bernoulli beams by means of dynamic Green functions. - Journal of Sound and Vibration. - Vol. 267. - 2003. - P. 191–207.
  16.  Abu-Hilal M. Deflection of Beams by Means of Static Green Functions. - Universal Journal of Mechanical Engineering. -Vol. 4. - No. 2. - 2016. -P. 19-24.