До оцінки живучості шарнірно-стрижневих систем

Заголовок (англійською): 
ASSESSMENT OF ROBUSTNESS OF HINGED-BAR SYSTEMS
Автор(и): 
Перельмутер А. В.
Автор(и) (англ): 
Perelmuter A. V.
Ключові слова (укр): 
живучість, прогресуюче руйнування, межа живучості, проективна матриця, фактори участі
Ключові слова (англ): 
Robustness, Progressive collapse, Robustness measure, Design matrix, Participation factors
Анотація (укр): 
Як правило, проектування конструкцій враховує передбачувані навантаження і для таких варіантів роботи підбираються розміри поперечних перерізів. Однак конструкції можуть зазнавати і непередбачених подій, таких як інтенсивні явища навколишнього середовища, аварії, зловмисні дії, а також помилки планування або виконання. Ця обставина визначає інтерес до проблеми живучості конструкцій, якій останнім часом присвячується багато робіт. Ця стаття присвячена методам оцінки живучості шарнірно-стрижневих систем. Об'єктом дослідження обрані фермові конструкції, найпростіші у обчислювальному відношенні, але що дають можливість повністю проілюструвати пропонований підхід. Спочатку аналізуються відмінності прогресуючого обвалення (опис процесу) від непропорційного розвитку локальних руйнувань (опис стану). Вказується на узагальнюючий характер поняття живучості та її від поняття невразливості. Розглядається проблема виміру живучості. Аналізуються відомі кількісні оцінки живучості, основна увага при цьому спрямована на оцінки, інваріантні по відношенню до напруженого стану як більш загальні. Розглядаються оцінки, що використовують такі властивості матриці жорсткості як число обумовленості, або засновані на зіставленні детермінантів початкової матриці жорсткості, що змінилася. Вказується те що, що ступінь статичної невизначеності може лише необхідним, але недостатнім вимірником живучості. Відзначається відомий варіант оцінки живучості за допомогою матриці надмірностей, що визначається зусиллями, які необхідно докласти для складання системи з елементів, що мають довжину, відмінну від проектної. Цьому варіанту протиставляється використання матриці-проектора, елементи головної діагоналі якої вказують на ступінь стрижнів у забезпеченні живучості. Розглянуто основні властивості проектора, обумовлені тим, що він є матрицею нильпотентною. Показана можливість перерахунку початкової матриці-проектора до проектора системи, що змінилася, за допомогою кроку жорданових виключень. На найпростішому прикладі демонструються формування та зміни матриці-проектора. Крім руйнування стрижня розглядається і випадок його ушкодження (часткового руйнування), показано як це позначається зміні проектора і перерозподіл внутрішніх зусиль.
Анотація (англ): 
Typically in structural design, foreseeable loads are assumed in a dimensioning exercise. Structures can, however, be exposed to largely unforeseeable events such as intense environmental phenomena, accidents, malicious acts, and planning or execution errors. This circumstance determines the interest in the problem of structural robustness, which has been the subject of many recent works. This paper focuses on methods for assessing the robustness of hinged bar systems, considering truss structures as an example. They are the simplest in terms of computation, but make it possible to fully illustrate the proposed approach. First, the differences between progressive collapse (description of the process) and the disproportionate propagation of local failures (description of the state) are analyzed. The generalizing nature of the concept of robustness and its differences from the concept of invulnerability are pointed out. The paper considers the problem of measuring robustness. The known quantitative estimates of robustness are analyzed focusing on estimates that are invariant with respect to the stress state, as more general ones. The paper considers estimates that use such properties of the stiffness matrix as the condition number, or based on a comparison of the determinants of the original and changed stiffness matrices. It is pointed out that the degree of static indeterminacy can serve only as a necessary, but insufficient measure of robustness. The paper considers a well-known method of robustness assessment using a redundancy matrix determined by the forces that must be applied to assemble the system from elements with the length different from the design one. This method is opposed to the use of a projection matrix, the main diagonal elements of which indicate the degree of participation of the bars in ensuring robustness. The main properties of the idempotent projection matrix are considered. The paper illustrates the possibility of recalculating the projection matrix for the changed system with the help of the Jordan elimination step. A simple example demonstrates assembling and changing the projection matrix. In addition to the failure of the bar, the case of its damage (partial failure) is also considered, it is shown how it affects the change in the projector and the redistribution of internal forces. Keywords: Robustness, Progressive collapse, Robustness measure, Design matrix, Participation factors.
Публікатор: 
Київський національний університет будівництва і архітектури
Назва журналу, номер, рік випуску (укр): 
Опір матеріалів і теорія споруд, 2022, номер 109
Назва журналу, номер, рік випуску (англ): 
Strength of Materials and Theory of Structures, 2022, number 109
Мова статті: 
English
Формат документа: 
application/pdf
Документ: 
Дата публікації: 
25 December 2022
Номер збірника: 
Університет автора: 
SCAD Soft Ltd., Osvity str., 3a, Office 2, Kyiv, 03037, Kyiv National University of Construction and Architecture, Povitroflotsky Ave., 31, Kyiv, 03680
References: 
  1. Adam JM, Parisi F, Sagaseta J, Lu X. Research and practice on progressive collapse and robustness of building.”structures in the 21st Century // Engineering Structures, 2018, Vol. 173¾ 122-149.
  2. Baker J.W., Schubert M., Faber M.H. On the assessment of robustness // Structural Safety, 2008, Vol. 30 — P.  253–267
  3. Biondini F., Frangopol D.M., Restelli S., On structural robustness, redundancy and static indeterminacy // Structures Congress 2008: Crossing Borders,  2008. —  Р. 1-10.
  4. Brett C. Assessment of robustness of structures: current state of research / C. Brett, Y. Lu // Frontiers of Structural and Civil Engineering. – 2013, – No 7(4). ‒ Р. 356-368. https://doi.org/10.1007/s11709-013-0220-z
  5. De Biagi V. Structural behavior of a metallic truss under progressive damage // International Journal of Solids and Structures, 2016, Vol. 82, рр. 56-64.
  6. De Biagi V., Chiaia B. Complexity and robustness of frame structures // International Journal of Solids and Structures, 2013. Vol. 50(22), рр. 3723-3741.
  7. Eriksson A., Tibert A.G. Redundant and force-differentiated systems in engineering and nature // Computer Methods in Applied Mechanics and Engineering, 2006, Vol. 195– P. 5437–5453.
  8. Ghosn M., Frangopol D.M., McAllister, T.P., Shah M., Diniz S.M.C., Ellingwood B.R., Manuel L., Biondini F., Catbas N., Strauss A., et al. Reliability-based performance indicators for structural members // Journal of Structural Engineering. 2016, Vol. 142, F4016002. 
  9. Jiang J., Zhang O., Li L., Chen W., Ye J., Li G-O. Review on Quantitative Measures of Robustness for Building Structures Against Disproportionate Collapse // International Journal of High-Rise Buildings, 2020, Vol. 9, No 2 – P.  127-154  https://doi.org/10.21022/IJHRB.2020.9.2.127
  10. Jiang J., Zhang O., Li L., Chen W., Ye J., Li G-Q. Collapse Review on Quantitative Measures of Robustness for Building Structures Against Disproportionate  // International Journal of  High-Rise Buildings, 2020, Vol. 9, No 2 ¾ P. 127-154.
  11. Kou X., Li L., Zhou Y., Song J. Redundancy Component Matrix and Structural Robustness // International Journal of Civil and Environmental Engineering, 2017, 11 ¾ P. 1150–1155.
  12. Li L.L., Li G.Q., Jiang B., Lu Y. Analysis of robustness of steel frames against progressive collapse // Journal of Constructional Steel Research, 2018 , No.143. – P. 264-278.
  13. Nafday A.M. System Safety Performance Metrics for Skeletal Structures // Journal of Structural Engineering, 2008, Vol. 134, No. 3, pp. 499-504.
  14. Nafday A.M. System Safety Performance Metrics for Skeletal Structures // Journal of Structural Engineering, 2008, 134(3) ¾ Р. 499-504.
  15. Nafday AM. (). “Consequence-based structural design approach for black swan events // Structural Safety, 2011, Vol. 33(1) ¾ Р. 108-114.
  16. Perelmuter A.V., Slivker V.I. Numerical Structural Analysis: Models: Methods and Pitfalls.— Berlin-New York-London-Milan-Paris-Tokyo: Springer Verlag, 2003.— 600 p.
  17. Starossec U., Haberland M. Approaches to measures of structural robustness // Structure and Infrastructure Engineering, 2011,  7 (7-8) — Р. 625-631 .
  18. Starossek U, Haberland M. Disproportionate collapse: terminology and procedures // Journal of Performance of Constructed Facilities, 2010, Vol. 24(6) – P. 519-528.
  19. Starossek, U., Haberland M. Evaluating measures of structural robustness // Proceedings of Structural Congress, 2009. ¾ Р. 1758-1765.
  20. Starossek, U., Haberland M. Measures of structural robustness – requirements & applications  // Proceedings of the ASCE SEI 2008 Structural Congress – Crossing Borders, Vancouver, Canada, April 24-26. ¾ 2008.
  21. Strang G. Introduction to Linear Algebra — Wellesley: Cambridge Press, 2016 —  574 p.
  22. Zhu, B., Frangopol D.M. Reliability, redundancy and risk as performance indicators of structural systems during their life-cycle // Engineering Structures. 2012, Vol. 41 — Р. 34–49.
  23. Kudishin Yu.I., Drobot D.Yu. Robustness of Building Structures is an Important Factor in Reducing Losses in Accidents // Steel Structures. – Makiivka: DonNASA. – 2009. – No. 1 – p. 61 – 72.
  24. Perelmuter A.V. The Effect of Stiffness Variation on Force Redistribution in a Statically Indeterminate System // Structural Mechanics and Structural Analysis.— 1974.— No. 5.— p. 64-67.
  25. Perelmuter A.V. Assessment of Robustness of Load-Bearing Structures // Metal Structures: Works of Professor N.S. Streletskiy.— M.: MGSU, 1995.— p. 62-68. 
  26. Rabinovich I.M. On the Theory of Statically Indeterminate Trusses — Moscow: Transzheldorizdat, 1933, 119 p.
  27. Majid K.I. Optimum design of structures ¾ London: John Wiley & Sons, 1974 ¾ 264 p.