Числове та експериментальне моделювання поведінки гнучких оболонкових елементів конструкцій

Заголовок (англійською): 
Numerical and experimental modeling of the behavior of flexible shell elements of structures
Автор(и): 
Дзюба А.П.
Сафронова І.А.
Левитіна Л.Д.
Автор(и) (англ): 
Dzyuba A.P.
Safronova I.A.
Levitina L.D.
Ключові слова (укр): 
гнучкі оболонки обертання, гофровані мембрани, сильфони, числовий аналіз, експериментальні дослідження
Ключові слова (англ): 
flexible shells of rotation, corrugated membranes, bellows, numerical analysis, experimental studies
Анотація (укр): 
Для задач осесиметричного нелінійного згинання тонких оболонок обертання зі складною формою меридіану (тонких кільцевих пластин, гофрованих мембран синусоїдального профілю та сильфонів) проведено порівняльний аналіз застосування двох математичних моделей деформування гнучких оболонкових елементів. Числові результати отримані шляхом безпосереднього інтегрування крайових задач механіки оболонок, методом скінчених елементів та експериментальних досліджень. Результати оптимального проектування гнучкої гофрованої мембрани синусоїдального профілю найбільшої чутливості отримані з використанням необхідних умов оптимальності принципу максимуму Л. С. Понтрягіна. Результати подані у вигляді таблиць, фотографій та графіків.
Анотація (англ): 
This article is devoted to computer and experimental modeling of the behavior of flexible elements of shell structures, and the development of effective algorithms for solving emerging nonlinear boundary value problems of their calculation and optimization of parameters. At the same time, the probability of the results obtained using different approaches to the construction of a nonlinear theory is established. Their comparative analysis, error estimation, which in this case is given by calculation according to linear and corresponding nonlinear theories, is carried out. The results of calculated data and experimental studies of the behavior of real structural elements are compared. The results of a comparative analysis of the application of two mathematical models of deformation of flexible shell elements, obtained by direct integration of boundary value problems of shell mechanics, by the finite element method and experimental research, are presented. The problems of axisymmetric nonlinear bending of thin ring plates, corrugated membranes of a sinusoidal profile and bellows as a shell of rotation with a complex meridian shape are considered. Using the necessary optimality conditions of the principle of maximum L. S. Pontryagin obtained the results of the optimal design of a flexible corrugated membrane with a sinusoidal profile of the highest sensitivity. The results are presented in the form of tables, photos and graphs.
Публікатор: 
Київський національний університет будівництва і архітектури
Назва журналу, номер, рік випуску (укр): 
Опір матеріалів і теорія споруд, 2023, номер 110
Назва журналу, номер, рік випуску (англ): 
Strength of Materials and Theory of Structures, 2023, number 110
Мова статті: 
English
Формат документа: 
application/pdf
Дата публікації: 
14 September 2023
Номер збірника: 
Розділ: 
Опір матеріалів і теорія споруд, 2023, номер 110
Університет автора: 
Oles Honchar Dnipro National University, 72, Gagarina Av, Dnipro, Ukraine, 49010
References: 
  1. Bazhenov V.A. Kryvenko O. L., Solovei M. O. Nonlinear deformation and stability of elastic shells of heterogeneous structure. – K., 2010. – 316 p.
  2. Hrigorenko Y.M., Hulyaev V.I. Nonlinear problems of shell theory and methods of solving them (review) // Applied Mechanics, 1991. – No. 10. – P.3-33.
  3. Molchenko L. V. Flexible shells of rotation in a magnetic field: monograph. – K., 2013. –196 p.
  4. Bazhenov V., Krivenko O. Bucling and Naturel Vibrations of Thin Elastic Inhomogeneous Shells. – LAP LAMBERT Academic Publishing Saarbruken, Deutseland, 2018. –97 p. 
  5. Ponomaryov S.D., Andreeva L.E. Calculation of elastic elements of machines and devices. – M.: Mashinostroenie. – 1980. – 326 p.
  6. Karamzin D., Pereira F.L. On a Few Questions Regarding the Study of State-constrained Problems in Optimal Control // J. Optim. Theory Appl., 2019. – 180. – P. 235-255.
  7. Dzyuba A.P., Sirenko V.N., Dzyuba A.A., Safronova I.A., Models and Algorithms for Optimizing Elements of Heterogeneous Shell Structures. Actual problems of mechanics: Monograph ed. by N. V. Polyakov. Dnipro: Lira, 2018. – P. 225-244.
  8. Kostyra N.O. The problem of optimal design of flexible shells of complex configuration // Building materials, materials, machine construction. Dn.: PGASA, 2012. – Iss. 65. – P. 298-303.
  9. Birger I.A. General algorithms for solving problems in the theory of elasticity, plasticity, and creep // Uspekhi mekhaniki deformiruemykh sred. – M.: Nauka, 1975. – P. 51–73.
  10. Hrigorenko Ya.M., Bespalova E.I., Kitaigorodsky A.B., Shinkar A.I. On the numerical solution of nonlinear boundary value problems of the statics of flexible shells. – DAN of the Ukrainian SSR. Ser. A, 1980. – No. 6. – P. 44-48.
  11. Petrov V.V. The method of successive loads in the nonlinear theory of plates and shells. – Saratov, 1975. –120 p.
  12. Hrigolyuk E.I., Mamai V.I. Nonlinear deformation of thin-walled structures. –M., 1997. –272 p.
  13. Kagadiy T. S., Shporta A. G., Bilova O. V., Shcherbina I. V. Mathematical modeling in problems of geometrically nonlinear theory of elasticity // Prikl. math question modeling. Kherson National Technical University Univ, 2021. –T.4. –No. 1. –P.103-110.
  14. Biderman V.L. Mechanics of thin–walled structures – M.: Mashinostroenie, 1977. – 488 p.
  15. Hrigorenko Y.M., Mukoed A.P. Solving nonlinear problems of the theory of shells on a computer. – K.: Higher School, 1983. – 286 p.
  16. Hrigorenko Ya.M., Hrigorenko A.Ya., Vlaikov G.G. Problems of mechanics for anisotropic Inhomogeneous Shells. On the basis of different models. K.: S. P. Timoshenko Institute Academy of Science of Ukraine, 2009. –556 p.
  17. Bulakajev P.I., Dzjuba A.P. An algorithm for the prediction of search trajectory in nonlinear programming problems optimum design // Structural Optimization: Research Jornal of Intern. Society of Struct. and Multidisciplinary Optimiz. Springer –Verlag, 1997. –V.13. –№2,3. –Р.199-202.
  18. Dzyuba, A.P., Safronova, I.A. Algorithms for accelerating the convergence of iterative processes for calculating the envelopes of rotation of a complex meridian shape for large displacements // Visnyk Dnipropetr. university Ser.: Mechanics. –Vol. 2. – Dn-sk: PH of DNU, 2015. –Iss. 19. – P. 38-55.
  19. Dzyuba A.P., Safronova I.A., Levitina L.D. Algorithm for computational costs reducing in problems of calculation of asymmetrically loaded shells of rotation. Опір матеріалів і теорія споруд /Strength of Materials and Theory of Structures, 2020. –№ 105. –С. 99-113.
  20. Bryson A.E., Yu-Chi Ho Applied Optimal Control. Toronto, London, 1969.
  21. Pontryagin L.S., Bolteanskii V.G., Gamkrelidze R.V., Mishchenko E.F. The Mathematical Theory of Optimal Processes. Interscience: New York. – NY, USA, 1962.
  22. Dzyuba A., Torskyy A. Algorithm of the successive approximations method for optimal control problems with phase constraints for mechanics tasks. Mathematical modeling and computing. –Vol. 9, 2022. –No. 3 – P. 734-749.