Раціональна топологія сталевих двотаврових балок із різними градієнтами зміни висоти стінки і ширини полиць на визначених секціях по довжині конструкції

Заголовок (англійською): 
Rational topology of steel i-beams with various gradients of changing wall height and shelf width at specified sections along the length of the beam
Автор(и): 
Джанов Л.В.
Білик С.І.
Білик А.С.
Автор(и) (англ): 
Dzhanov L.V.
Bilyk S.I.
Bilyk А.S.
Ключові слова (укр): 
сталеві конструкції балок, моделювання, сталеві двотаврові балки змінного перерізу, оптимальна топологія, цільова функція, умови Куна-Такера, метод множників Лагранжа, сталеві балки із різними параметрами швидкості зміни висоти стінки і ширини полиць на окремих ділянках, раціональна топології сталевої двотаврової балки з адекватними умовами проектування
Ключові слова (англ): 
steel beam structures, modeling, variable cross-section steel I-beams, optimal topology, objective function, Kuhn–Tucker conditions, Lagrange multipliers method, steel beams with different rates of web height and flange width variation in specific segments, rational topology of steel I-beams with adequately formulated design conditions
Анотація (укр): 
Розроблено методичний підхід до пошуку раціональної топології сталевих двотаврових балок змінної жорсткості під час дії рівномірно розподіленого навантаження по довжині конструкції. Показано, що для таких балок зі змінною висотою стінки і полиць максимальна напруга не виникає в перерізі, де діє максимальний згинальний момент. Задача пошуку оптимальної висоти перерізу вирішується з використанням методу множників Лагранжа та з використанням умов Куна-Такера. Для сталевих двотаврових балок зі змінною висотою стінки і шириною полиць підтверджено достатні умови оптимальності всієї конструкції: рівність площі стінки дорівнює площі двох полиць. Але при лінійному зменшенні висоти стінки і ширини полиць у бік зменшення згинальних моментів по довжині конструкції маються нові розрахункові перерізи, в яких нормальні напруження в полицях перевищують нормальні напруження в перерізі, де діє максимальний згинальний момент. Це означає, що в балці змінної жорсткості є кілька розрахункових перерізів. Запропонована вдосконалена фізико-математична модель напружено-деформованого стану двотаврової балки при згині. Сталева балка двотаврового перерізу з новою топологією має можливість адаптуватися до напружено-деформованого стану з урахуванням зворотного зміни параметра ширини полів (висота балки у визначеному січенні зменшується або залишається постійною, а ширина і, відповідно, площа поперечного січення полиць збільшується відносно січення, де діє максимальний згинальний момент). Таке удосконалене конструктивне рішення дозволяє вирішити задачу досягнення напруження в поточних перерізах, які не перевищують міцність сталі за границею текучості, по всій довжині сталевої двотаврової балки. Проведені числові дослідження показали можливість знайти нові конструктивні рішення раціональних конструкцій сталевих двотаврових балок змінного перерізу. Також показана допустима множина раціональних рішень за результатами виконаних досліджень. Таким чином, задача пошуку раціональної топології сталевих двотаврових балок з лінійно-змінною шириною полки і висотою стінки є задачею з адекватними умовами проектування.
Анотація (англ): 
A methodological approach has been developed for determining the rational topology of steel I-beams with variable stiffness under uniformly distributed loading along the beam length. It has been shown that for such beams, with varying web height and flange width, the maximum stress does not occur in the section where the maximum bending moment acts. The problem of finding the optimal cross-sectional height is solved using the Lagrange multipliers method in conjunction with the Kuhn–Tucker conditions. For steel I-beams with variable web height and flange width, the sufficient condition for structural optimality is confirmed: the area of the web is equal to the total area of the two flanges. However, under linear reduction of web height and flange width in the direction of decreasing bending moments, new critical cross-sections arise along the beam length in which the normal stresses in the flanges exceed those in the section with the maximum bending moment. This indicates that beams with variable stiffness may have multiple governing sections. An improved physical–mathematical model of the stress–strain state of I-beams in bending is proposed. A steel I-beam with the proposed new topology has the ability to adapt to its stress–strain state by introducing reverse variation of flange width: in selected sections, the beam height decreases or remains constant, while the flange width and accordingly the flange cross-sectional area increases relative to the section where the maximum bending moment acts. This improved design approach allows for achieving stress levels in all current cross-sections that do not exceed the yield strength of steel along the entire length of the I-beam. The numerical studies conducted demonstrate the possibility of finding new rational design solutions for variable cross-section steel I-beams. The existence of an admissible set of rational solutions based on the obtained results has also been confirmed. Thus, the problem of determining the rational topology of steel I-beams with linearly varying flange width and web height represents a design task with appropriately formulated and adequate design condition.
Публікатор: 
Київський національний університет будівництва і архітектури
Назва журналу, номер, рік випуску (укр): 
Опір матеріалів і теорія споруд, 2025, номер 114
Назва журналу, номер, рік випуску (англ): 
Strength of Materials and Theory of Structures, 2025, number 114
Мова статті: 
English
Формат документа: 
application/pdf
Дата публікації: 
05 Июнь 2025
Номер збірника: 
Університет автора: 
Kyiv National University of Construction and Architecture, Kyiv , Research Institute VR, Kyiv
References: 
 
  1. Bazhenov V.A. Budivelna mekhanika i teoriia sporud. Narysy z istorii (Construction mechanics and the theory of structures. Essays on history) / V.A. Bazhenov, Yu.V. Vorona, A.V. Perelmuter. – K.: Karavela, 2016. – 428 p. https://scadsoft.com/download/History.pdf. {in English}
  2. Bilyk A.S. Vyznachennya optymalnykh konstruktyvnykh rishen ferm u ekspertniy systemi odnostadiynoho optymalnoho proektuvannya / Zb. nauk.prats UNDPISK im. V.M.Shymanovskoho. – Kyyiv, vyd-vo «Stal», 2009, vyp. 4. – S.119-1323. {in Ukrainian}. http://nbuv.gov.ua/UJRN/ZNPISK_2009_4_16http://nbuv.gov.ua/UJRN/ZNPISK_2... .
  3. Beyko I.V., Zinko P.M., Nakonechnyy O.H. Zadachi, metody i alhorytmy optymizatsiyi: Navchalnyy posibnyk - Rivne: NUVHP, 2011. – 644 s. https://ep3.nuwm.edu.ua/2017/1/715823%20zah.pdf. 3 {in Ukrainian}.
  4. S. Bilyk, O. Bashynska, O. Bashynskyi. Determination of changes inthermal stress state of steel beams in LIRA-SAPR software // Strength of Materials and Theory of Structures. – 2022. – № 108. – P. 182-202. Doi:10.32347/2410-2547.2022.108.189- 202. {in English}.
  5. Daurov M.K., Bilyk A.S. Providing of the vitality of steel frames of high-rise buildings under action of fire // Strength of Materials and Theory of Structures: Scientific-and-technicalcollectedarticles – Kyiv: KNUBA, 2019. – Issue 102. – P. 62-68. http://opir.knuba.edu.ua/files/zbirnyk-102/09-102.pdf. {in English}.
  6. Hohol M. V. Rehulyuvannya napruzheno-deformovanoho stanu kombinovanykh stalevykh konstruktsiy : dys. … d-ra tekhn. nauk : 05.23.01. Poltava, 2019. 524 s. 3 {in Ukrainian}.
  7. Shugaylo, О., Bilyk, S. (2023). Development of Safety Assessment Methods for Steel Support Structures of Nuclear Power Plant Equipment and Piping under Seismic Loads. Nuclear and Radiation Safety, 1 (97), 20–29. https://doi.org/10.32918/nrs.2023.1(97).03. {in English}.
  8. Hordeyev V.M. Elementarni zadachi optymizatsiyi dvotavra / Zb. nauk. prats Ukrayinskoho naukovo-doslidnoho ta proektnoho instytutu stalevykh konstruktsiy imeni V.M. Shymanovskoho. K., Stal, 2009. Vyp.3. S.27-48. {in Ukrainian}.
  9. Lavrinenko L., Oliynyk, D. (2020). Oblasti optymalnykh parametriv stalevykh hofrovanykh balok. Budivelni konstruktsiyi. Teoriya i praktyka, (7), C.45–56. https://doi.org/10.32347/2522-4182.7.2020.45-56. {in Ukrainian}.
  10. Lapenko A.Y. Holodnov A.Y, Fomina Y.P. Podbor optymalnykh po raskhodu staly sechenyy svarnykh dvutavrovykh balok/ Zbirnyk naukovykh prats Ukrayinskoho derzhavnoho universytetu zaliznychnoho transportu/ Tom 2, № 151, 2015. S.135-140. https://doi.org/10.18664/1994-7852.151.2015.69134. {in Ukrainian}.
  11. Permyakov V.A., Perelmuter A.V., Yurchenko V.V. Optymalne proektuvannya stalevykh sterzhnevykh konstruktsiy. K., Stal, 2008. - 538 s. { rus }.
  12. Paola Bertolini, Martin A. Eder Luca Taglialegne Paolo Sebastiano ValvoStresses in constant tapered beams with thin-walled rectangular and circular cross sections Thin-Walled Structures. Volume 137, April 2019, Pages 527-540. DOI: 10.1016/j.tws.2019.01.008. {in English}.
  13. Guljaev V. I., Bazhenov V. A., Koshkin V. L. Optimization techniques in structural mechanics (Optimization methods in structural mechanic). – Kyiv, 1988. – 192 p. (rus).
  14. Haug E. J., Arora J. S. Applied optimal design: mechanical and structural systems. – John Wiley & Sons, 1979. – 520 p. https://www.researchgate.net/profile/Edward-Haug-2/publication/327630206_Applied_Optimal_Design/links/5b9a68e145851574f7c3d08a/Applied-Optimal-Design.pdf. {in English}.
  15. Hohol M., Marushchak U., Peleshko I., Sydorak D. (2022) Rationalization of the Topology of Steel Combined Truss. In: Bieliatynskyi A., Breskich V. (eds) Safety in Aviation and Space Technologies. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-85057-9_9. {in English}.
  16. Tej Kumar, Krishnan Suresh. A density-and-strain-based K-clustering approach to microstructural topology optimization /Structural and Multidisciplinary Optimization/ April 2020, Vol.61(№4): р.1399–1415. DOI:10.1007/s00158-019-02422-4. {in English}.
  17. Lizunov P.P., Pogorelova O.S., Postnikova T.G. Selection of the optimal design for a vibro-impact nonlinear energy sink//Strength of Materials and Theory of Structures: Scientific-and-technical collected21,22, articles. – K.: KNUBA. 2023. – Issue111. – P. 13-24. DOI: 10.32347/2410-2547.2023.111.13-24. {in English}.
  18. Leonid S. Lyakhovich, Pavel A. Akimov, Boris A. Tukhfatullin Аssessment criteria of optimal solutions for creation of rods with piecewise constant cross-sections with stability constraints or constraints for value of the first natural frequency part 2: numerical examples. International Journal for Computational Civil and Structural Engineering, 15(4). (2019) - р.р.101-110. DOI:10.22337/2587-9618-2019-15-4-101-110. {in English}.
  19. Mela, K., Heinisuo, M. Weight and cost optimization of welded high strength steel beams. Engineering Structures. 2014. No. 79. Pp. 354–364. https://www.academia.edu/116219844/Weight_and_cost_optimization_of_welded_high_strength_ steel_beams. {in English}.
  20. McKinstray, R., Lim, J. B. P., Tanyimboh, T. T., Phan, D. T., & Sha, W. (2016). Comparison of optimal designs of steel portal frames including topological asymmetry considering rolled, fabricated and tapered sections. Engineering Structures, 111, 505–524. https://doi.org/10.1016/j.engstruct.2015.12.028. {in English}.
  21. Nuzhnyj, V., & Bilyk, S. (2024). Revealing the influence of wind vortex shedding on the stressed-strained state of steel tower structures with solid cross-section. Eastern-European Journal of Enterprise Technologies, 3(1 (129), 69–79. https://doi.org/10.15587/1729- 4061.2024.306181. {in English}.
  22. Nguyen, T-T., Lee, J., Optimal design of thin-walled functionally graded beams for buckling problems, Composite Structures (2017), doi: http://dx.doi.org/10.1016/j.compstruct.2017.07.024. {in English}.
  23. Рerel'muter А.V. Synthesis problems in the theory of structures (brief historical review) https://cyberleninka.ru/article/n/zadachi-sinteza-v-teorii-sooruzheniy-kratkiy-istoricheskiy-obzor (rus). {in English}.
  24. Sudeok Shon, Sengwook Jin, Seungjae Lee Minimum Weight Design of Sinusoidal Corrugated Web Beam Using Real-Coded Genetic Algorithms. Mathematical Problems in Engineering. Vol. 2017, Article ID 9184292. 2017. 13 p.p. doi.org /10.1155/2017/ 9184292. {in English}.
  25. Yurchenko V. V., Peleshko I. D.. Searching for optimal prestressing of steel bar structures based on sensitivity analysisfile/ Archives of Civil Engineering Vol LXVI, ISSUE 3, 2020, р.525-540. {in English}.
  26. Yang, Y.; Yau, J. Stability of Beams with Tapered I-Sections. J. Eng. Mech. 1987, 113, 1337–1357. Journal of Engineering Mechanics 113(9)DOI:10.1061/(ASCE)0733-9399(1987)113:9(1337). {in English}.