Вплив нагріву на власні коливання тонких параболічних оболоно
Заголовок (російською):
Влияние нагрева на собственные колебания тонких параболических оболочек
Заголовок (англійською):
Effect of heating on the natural vibrations of thin parabolic shells
Автор(и):
Баженов В.А.
Кривенко О.П.
Ворона Ю.В.
Автор(и) (англ):
Bazhenov V.A.
Krivenko O.P.
Vorona Yu.V.
Ключові слова (укр):
вібрації, температурне поле, параболічна оболонка, універсальний просторовий скінченний елемент
Ключові слова (рус):
вибрации, температурное поле, параболическая оболочка, универсальный пространственный конечный элемент
Ключові слова (англ):
vibrations, temperature filed, parabolic shell, universal solid finite element
Анотація (укр):
Проведено модальний аналіз параболічних оболонок обертання, що знаходяться в температурному полі. Аналіз проводиться методом, який ґрунтується на співвідношеннях тривимірної теорії термопружності, скінченно-елементної постановки задачі у приростах та використовує моментну схему скінченних елементів. Для моделювання тонкої пружної оболонки використовується універсальний скінченний елемент. Скінченний елемент побудований на основі просторового ізопараметричного скінченного елемента з полілінійними функціями форми для координат і переміщень. Оцінка впливу температурного поля на параметри власних коливань оболонки проводиться у два етапи. На першому етапі за допомогою геометрично нелінійного методу визначається новий напружено-деформований стан конструкції. Далі обчислюються частоти і форми власних коливань оболонки, форма яких збурена дією температурного поля. Проведено детальне дослідження впливу рівномірного і нерівномірного нагріву на власні коливання параболічних оболонок різної висоти. Вивчено коливання параболічних оболонок, що моделюють обтічник ракети. Дослідження показали ефективність застосування розробленого підходу до модального аналізу оболонок.
Анотація (рус):
Выполнен модальный анализ параболических оболочек вращения, находящихся в температурном поле. Анализ проводится методом, основанном на соотношениях трехмерной теории термоупругости, конечно-элементной постановки задачи в приращениях и использует моментную схему конечных элементов. Для моделирования тонкой упругой оболочки используется универсальный конечный элемент. Конечный элемент построен на основе пространственного изопараметрического конечного элемента с полилинейнымы функциями формы для координат и перемещений. Оценка влияния температурного поля на параметры собственных колебаний оболочки проводится в два этапа. На первом этапе с помощью геометрически нелинейного метода определяется новое напряженно-деформированное состояние конструкции. Далее вычисляются частоты и формы собственных колебаний оболочки, форма которых возмущена действием температурного поля. Проведено детальное исследование влияния равномерного и неравномерного нагрева на собственные колебания параболических оболочек различной высоты. Изучены колебания параболических оболочек, моделирующих обтекатель ракеты. Исследования показали эффективность применения разработанного подхода к модального анализа оболочек.
Анотація (англ):
The modal analysis of parabolic shells of revolution exposed to temperature field is carried out. The analysis is performed according to the method, which is based on the relations of the three-dimensional theory of thermoelasticity, a finite-element formulation of the problem in increments and uses the finite element moment scheme. A universal finite element is used to model a thin elastic shell. The finite element is based on an isoparametric solid finite element with polylinear shape functions for coordinate and displacement interpolation. Evaluation of the effect of the temperature field on the parameters of the natural vibrations of the shell is performed according to the developed method in two stages. The new stress-strain state of the structure, caused by the applied temperature field, is determined using a geometrically non-linear approach. Further, the frequencies and modes of the natural vibrations of the shell whose shape is perturbed by the action of the temperature field are calculated. The effect of uniform and non-uniform heating on the natural vibrations of parabolic shells of revolution with various heights is investigated. The vibrations of the parabolic shells modelling rocket fairings are studied. The phenomenon of aerodynamic heating of a parabolic shell (head fairing) may occur at the initial stage of entry of the carrier rocket into the atmosphere. This can lead to significant heating of the fairing surface. At the same time the shell is non-uniformly heated through the height. The considered parabolic shells are essentially deep and rather rigid. Therefore, the effect of heating on the characteristics of natural vibrations is insignificant. It has been found that shallow shells have lower frequencies and significantly different modes of natural vibration. Presented studies have shown the effectiveness of the application of the developed approach to the modal analysis of the shells.
Публікатор:
Київський національний університет будівництва і архітектури
Назва журналу, номер, рік випуску (укр):
Опір матеріалів і теорія споруд, 2019, номер 103
Назва журналу, номер, рік випуску (рус):
Сопротивление материалов и теория сооружений, 2019, номер 103
Назва журналу, номер, рік випуску (англ):
Strength of Materials and Theory of Structures, 2019, number 103
Мова статті:
English
Формат документа:
application/pdf
Документ:
Дата публікації:
29 Декабрь 2019
Номер збірника:
Університет автора:
Київський національний університет будівництва і архітектури Повітрофлотський просп., 31, м. Київ, Україна. 03680
References:
1. Bazhenov V., Krivenko O. Buckling and Natural Vibrations of Thin Elastic Inhomogeneous Shells. – LAP LAMBERT Academic Publishing. Saarbruken, Deutscland, 2018. – 97 p.2. Krivenko O.P. Vplyv nahrivu na stiykist' i vlasni kolyvannya sferychnoyi paneli pry zmini umov kombinovanoho zakriplennya konturu // Opir materialiv i teoriya sporud: nauk.-tekh. zbirn. – K.: KNUBA, 2015. – Vyp. 96 – S. 48-65. [The effect of heating on the stability and natural vibrations of a spherical panel with the changing combined fixation of the boundary // Strength of Materials and Theory of Structures: Scientific-and-technical collected articles. – K.: KNUCA, 2015. – Issue 96. – Pp. 48-65. – in Ukrainian].3. Krivenko O.P. Vplyv poperednoho nahrivu ta zminy umov kombinovanoho zakriplennia konturu na stiikist i vlasni kolyvannia polohykh panelei pry dii tysku // Opir materialiv i teoriya sporud: nauk.-tekh. zbirn. – K.: KNUBA, 2016. – Vyp. 97. – S. 107-120. [The effect of preliminary heating and combined fixation of the boundary on the stability and natural vibrations of panels under action of pressure // Strength of Materials and Theory of Structures: Scientific-and-technical collected articles – Kyiv: KNUBS, 2016. – Issue 97. – Pp. 97-110. – in Ukrainian].4. Flyachok V.M., Shvets R.N. Vliyaniye neravnomernogo nagreva na sobstvennyye kolebaniya anizotropnykh tsilindricheskikh obolochek // Teplovyye napryazheniya v elementakh konstruktsiy. 1981. – Vyp. 9. – S. 48-53. [The effect of non-uniform heating on the natural vibrations of anisotropic cylindrical shells // Thermal stresses in structural elements, 1981. - Issue. 9. - S. 48-53. – in Russian].5. Bykov Yu.A., Gnesin V.I. Vliyaniye temperaturnoy neravnomernosti na aerotermouprugiye kolebaniya turbinnoy lopatki // Tekhnologii konstruktsionnykh materialov i mashinostroyeniya. 2011. – S. 39-44. [The effect of temperature non-uniformity on aero-thermoelastic vibrations of a turbine blade // Technology of construction materials and mechanical engineering, 2011. - P. 39-44. – in Russian]6. Bazhenov V.A., Krivenko O.P., Vorona Yu.V. Analiz vlasnykh kolyvan tonkykh parabolichnykh obolonok // Opir materialiv i teoriya sporud: nauk.-tekh. zbirn. – K.: KNUBA, 2019. – Vyp. 102. – S. 171-179. [Analysis of non-state reaction of elastic shell to impulse load // Strength of Materials and Theory of Structures: Scientific-and-technical collected articles – Kyiv: KNUBS, 2019. – Issue 102. – Pp. 171-179. – in Ukrainian].7. Chernobryivko M.V., Avramov K.V., Romanenko V.N., Tonkonozhenko A.M., Batutina T.Ya. Sobstvennyie kolebaniya obtekateley raket-nositeley // Visnyk SevNTU: zb. nauk. pr. Vyp. 137/2013. Seriia: Mekhanika, enerhetyka, ekolohiia. – Sevastopol, 2013. S. 15 – 18. [natural vibrations of fairings of rocket-carriers // Visnyk SevNTU: Scientific collected articles, Issue 137/2013. Series: Mechanics, Energy, Ecology. - Sevastopol, 2013. Pp. 15 - 18. – in Russian].8. [Electronic resource]. – Access mode: https://habr.com/ru/post/410619/].9. Krivoshapko S.N. K voprosu o primenenii parabolicheskih obolochek vrascheniya v stroitelstve v 2000-2017 godah // Stroitelnaya mehanika inzhenernyih konstruktsiy i sooruzheniy, 2017. – № 4. – S. 4-14. [To the question of the use of parabolic shells of revolution in construction in 2000-2017 // Structural Mechanics of Engineering Structures and Structures, 2017. - No. 4. - Pp. 4-14. – in Russian].10. Chernobryivko M.V., Avramov K.V. Sobstvennyie kolebaniya parabolicheskih obolochek // Mat. metody ta fiz.-mekh. polia, 2014. – 57, № 3. – S. 78 – 85. [Natural vibrations of parabolic shells // Mathematical Methods and Phys-Mech. fields, 2014. - 57, No. 3. - Pp. 78 - 85. – in Russian].11. Tornabene F., Viola E. 2-D solution for free vibrations of parabolic shells using generalized diferential quadrature method // European Journal of Mechanics - A/Solids. – 2008. – Vol. 27, № 6. – Pp. 1001–1025.12. Chen X., Ye K. An Exact Dynamic Stiffness Formulation for Predicting Natural Frequencies of Moderately Thick Shells of Revolution // Mathematical Problems in Engineering. – 2018. – Vol. 2018.13. Sahoo S. Free vibration behavior of laminated composite stiffened elliptic parabolic shell panel with cutout // Curved and Layered Structures. – 2015. – Vol. 2. – №. 1. - 162–182 p.14. Chun K.S., Kassegne S.K., Wondimu B.K. Hybrid/mixed assumed stress element for anisotropic laminated elliptical and parabolic shells // Finite Elements in Analysis and Design. – 2009. – Vol. 45. – №. 11. – P. 766-781.15. Yue H. et al. Modal sensing and control of paraboloidal shell structronic system // Mechanical Systems and Signal Processing. – 2018. – Vol. 100. – P. 647-661.16. Bazhenov V.A., Krivenko O.P., Solovey M.O. Neliniyne deformuvannya ta stiykist pruzhnih obolonok neodnoridnoyi strukturi. – K.: ZAT «Vipol», 2010. – 316 s. [Nonlinear deformation and stability of elastic shells with inhomogenous structure. Kyiv: CJSC “VIPOL”, 316 p. (2010) – in Ukrainian].17. Bazhenov V.A., Krivenko O.P., Solovey N.A. Nelineynoe deformirovanie i ustoychivost uprugih obolochek neodnorodnoy strukturyi: Modeli, metodyi, algoritmyi, maloizuchennyie i novyie zadachi. – M.: Knizhnyiy dom «LIBROKOM», 2013. – 336 s. [Nonlinear deformation and stability of elastic shells of inhomogeneous structure: Models, methods, algorithms, poorly-studied and new problems. – Moscow: publishing house "LIBROKOM", 336 p. (2013) – in Russian].18. SCAD Office.V.21.System SCAD++ / V.S.Karpilovskyy, E.Z.Kryksunov, А.А Maliarenko, A.V.Perelmuter, M.A.Perelmuter, S.Y. Fialko. – SCAD Soft, Electronic Edition, 2018. — 895 p.19. Zubchaninov V.G. Osnovy teorii uprugosti i plastichnosti: Uchebn. dlya mashinostroit. spec. vuzov. – M.: Vyssh. shk., 1990. – 368 s. [Fundamentals of the theory of elasticity and plasticity: Textbook. for machine building. specialist. universities. – M .: Higher. school, 1990. – 368 p. – in Russian].