Аннотації
25.12.2022
Найголовнішими факторами, що визначають ресурс роботи роторів парових турбін, які працюють в умовах тривалого навантаження під дією високих температур, є накопичення деформацій повзучості і супутнє накопичення пошкодженості матеріалу. Неоднорідність матеріалу призводить до виникнення дефекту, який є концентратором напружень. Для опису впливу розсіяних пошкоджень на міцність матеріалу конструкції застосовується функція пошкодженості, значення якої змінюється в процесі експлуатації. Для проведення дослідження розглядаються дискретні моделі при N = 235, N = 731 та N = 2047. Використання густіших дискретних моделей дозволяє уточнити величину основного ресурсу ротора на 2% та 1% відповідно. Для скінченноелеметної моделі при N = 731, величина основного ресурсу роботи ротора при наявності дефекту становить 104000 годин, що на 15% менше, ніж при відсутності дефекту. Величина додаткового ресурсу роботи ротора складає 6000 годин. На ізолініях у межах поперечного перерізу ротора в момент часу 2200 годин можна спостерігати найбільші значення параметра пошкодженості поблизу дефекту, а різниця максимальних значень параметра пошкодженості для ротора з дефектом та без нього складає 30%, яка з часом збільшується до 70%. Після 104000 годин область накопичення максимальних значень ω збільшується в обох напрямках поперечного перерізу ротора таким чином, що в напрямку осі обертання приріст максимальних значень параметра пошкодженості відбувається інтенсивніше. В момент часу 107000 годин співвідношення між характерними розмірами зони континуального руйнування в напрямках осей становить 2/3, а в моменту часу 110000 годин становить приблизно 1/2. Значення параметра пошкодженості у скінчених елементах, що межують із зоною руйнування не перевищує 0,3, тобто накопичення пошкодженості є локальним.
Main factors that determine the steam-turbine rotors work lifetime which work in a long-term load circumstances under an influence of high temperatures are the accumulation of creep deformations and the concomitant accumulation of the damage of the material. The heterogeneity of the material leads to the nascence of the defect that is the concentrator of stresses. To describe the dispersed damages impact on the construction material strength the function of the damage is applied the value of what changes during the operation process. To perform the research discrete models with N = 235, N = 731 and N = 2047 are considered. Using thicker discrete models allows clarifying the rotor basic lifetime value on 2% and 1% respectively. For the finite-element model with N = 731 the rotor basic lifetime value in the presence of the defect is 104000 hours that is less by 15% than in the absence of the defect. The rotor additional lifetime value is 6000 hours. The maximum value of the damage parameter can be observed on isolines nearby the defect at the moment of time 2200 hours and the difference between maximum values of the damage parameter for the rotor with the defect and hereunto is 30% that increases over time to 70%. After 104000 hours the accumulation region of the maximum values of the damage parameter increases in both directions of the rotor cross-section over time in such way that the augment of the maximum values of the damage parameter occurs more intensively in the rotation axis direction. At the moment of time 107000 hours the correlation between dimensions of the continuous fracture region in axes directions is 2/3 and to the moment of time 110000 hours is about 1/2. The value of the damage parameter in finite elements those border with the fracture region doesn’t exceed 0,3 scilicet the accumulation of the damage is local.
- Bazhenov, V.A., Gulyar, A.I. & Piskunov, S.O. Modeling Creep and Continuous Fracture Process Zones in Spatial Prismatic Bodies. Int Appl Mech 41, 1016–1030 (2005). https://doi.org/10.1007/s10778-006-0009-z.
- Bazhenov, V.A., Gulyar, A.I., Piskunov, S.O. et al. Design life assessment of the blade root of a gas turbine unit under thermomechanical loading. Strength Mater 45, 329–339 (2013). https://doi.org/10.1007/s11223-013-9463-0.
- Bazhenov, V.A., Pyskunov, S.O., Maksym’yuk, Y.V. et al. Effect of Geometric Nonlinearity on the Life of a Herringbone Lock Joint in Creep. Strength Mater 54, 372–377 (2022). https://doi.org/10.1007/s11223-022-00412-4.
- Баженов В.А., Гуляр О.І., Пискунов С.О., Сахаров О.С. Напіваналітичний метод скінченних елементів в задачах континуальногоруйнування просторових тіл: Монографія – К.: КНУБА, 2014. – 230 с.
- Шульженко М., Протасова Т., Мележик І. Неосесиметричне деформування та тріщиностійкість роторів парових турбін // Машинознавство. – 2007. – №8. – С.13-17.
- Качанов Л. М. Теория ползучести. – М.: ФИЗМАТЛИТ, 1960. – 456 с.
- Болотин В. В. Ресурс машин и конструкций. – М.: Машиностроение, 1990. – 448 с.
- Работнов Ю. Н. Ползучесть элементов конструкций. – М.: Наука, 1966. – 732 с.
- Шевченко Ю. Н., Мазур В. Н. Решение плоских и осесимметричных задач термовязкопластичности с учетом повреждаемости материала при ползучести // Прикл. механика. – 1986. – № 8. – С. 3–14.
- Бойл Дж. Анализ напряжений в конструкциях при ползучести. – М.: Мир, 1976. – 360 с.
- Bazhenov, V.A., Gulyar, A.I. & Piskunov, S.O. Modeling Creep and Continuous Fracture Process Zones in Spatial Prismatic Bodies. Int Appl Mech 41, 1016–1030 (2005). https://doi.org/10.1007/s10778-006-0009-z.
- Bazhenov, V.A., Gulyar, A.I., Piskunov, S.O. et al. Design life assessment of the blade root of a gas turbine unit under thermomechanical loading. Strength Mater 45, 329–339 (2013). https://doi.org/10.1007/s11223-013-9463-0.
- Bazhenov, V.A., Pyskunov, S.O., Maksym’yuk, Y.V. et al. Effect of Geometric Nonlinearity on the Life of a Herringbone Lock Joint in Creep. Strength Mater 54, 372–377 (2022). https://doi.org/10.1007/s11223-022-00412-4.
- Bazhenov, V. A., Hulyar, О.І., Pyskunov, S.O., Saharov, О.S.(2014). Semi-Analytical Finite Element Method in Problems of Continual Fracture of Spatial Bodies: The monograph. Kyiv: KNUCA, 230p. [in Ukrainian].
- Shulzhenko, M., Protasova, T., Melezhyk, I. (2007).Non-axisymmetric Deformation and Crack Resistance of Steam-Turbine Rotor. Machine Science, №8, P.13-17. [in Ukrainian].
- Kachanov, L.M. (1960). Theory of Creep. Moscow: FIZMATLIT, 456 p. [in Russian].
- Bolotin, V.V. (1990). Lifetime of Machines and Constructions. Moscow: Mechanical Engineering, 448 p. [in Russian].
- Rabotnov, Yu.N. (1966). Creep of Constructions Elements. Moscow: Scince, 732 p. [in Russian].
- Shevchenko, Yu.N., Mazur, V.N. (1986). Solving of Plane and Axisymmetric Problems of Thermoviscoplasticity Considering Damage of Material for Creep. Appl. Mechanics, № 8, P.3-14. [in Russian].
- Boyle, J. (1976). Stresses Analysis in Constructions for Creep. Moscow: Mir, 360 p. [in Russian].