Аннотації

Автор(и):
Рожок Л.С., Онищенко А.М., Гаркуша М.В., Башкевич І.В.
Автор(и) (англ)
Rozhok L.S., Onishchenko А.M., Garkusha M.V., Bashkevych I.V.
Дата публікації:

25.12.2022

Анотація (укр):

Альтернативою проведення кошторисних натурних експериментів є комп’ютерне моделювання, яке дозволяє досліджувати різноманітні стани, явища, процеси тощо, що мають місце в навколишньому середовищі. Проведення обчислювального експерименту є невід’ємною складовою на етапі проектування нових конструкцій та їх елементів. Одним із важливих питань залишається питання вибору моделі дослідження, відповідної розрахункової схеми та можливості її спрощення. Об’єктом дослідження в даній роботі є ортотропні нетонкі циліндричні оболонки з поперечним перерізом у вигляді гофрованих еліпсів, що має двопараметричне відхилення форми поперечного перерізу від кругової. Розглядаються оболонки,для яких радіус кривизни поперечного перерізу поверхні відліку має додатній знак. Оболонки знаходяться під дією внутрішнього тиску за умов простого обпирання торців. Предметом дослідження є напружений стан оболонок і, як наслідок, встановлення залежності між геометричними параметрами поверхні відліку поперечного перерізу оболонок та можливістю спрощення розрахункової схеми (вилучення з розгляду параметру, що характеризує еліптичність). Задачу розв’язано із використанням просторової моделі лінійної теорії пружності на основі методу апроксимації функцій дискретними рядами Фур’є. Для класу розглядуваних оболонок встановлено межі можливості спрощення розрахункової схеми при розрахунках на міцність з використанням четвертої теорії міцності (теорії найбільшої питомої потенціальної енергії), внаслідок вилучення з розгляду параметру, що характеризує еліптичність гофрованих циліндричних оболонок. За критерій можливості застосування спрощеної схеми обрано радіус кривизни поперечного перерізу поверхні відліку в зоні найбільшої жорсткості. Встановлено, що використання спрощеної схеми можливе за умови, що радіус кривизни поперечного перерізу поверхні відліку еліптичних гофрованих циліндричних оболонок в зазначеному перерізі відрізняється від аналогічного для кругових гофрованих оболонок не більше ніж на 17%.

Анотація (рус):

Анотація (англ):

An alternative to full-scale experiments is computer simulation, which allows studying a variety of states, phenomena, processes, etc. occurring in the environment. Conducting a computational experiment is an integral part of the design phase of new structures and their elements. One of the important issues is the choice of research model, feasible calculation scheme and possibility of its simplification. This research investigates orthotropic non-thin cylindrical shells with corrugated ellipses as cross sections, which has the two-parameter deviation of the cross-section shape from a circular one. Considered are shells, for which the cross-section curvature radius of the reference surface has the positive sign. The shells are subjected to internal pressure under conditions of simple support on the ends. The subject of the study is the stress state of shells and, as a consequence, the establishment of the relationship between the geometric parameters of the reference surface of the cross sections and the possibility of simplifying the calculation scheme (excluding from consideration the parameter characterizing ellipticity). The problem is solved using the spatial model of linear elasticity theory based on the method of approximation of functions by discrete Fourier series. For the class of considered shells, we find the limits of possible simplification of the calculation scheme during calculations on durability with use of the fourth theory of durability (the theory of the greatest specific potential energy), due to exclusion from consideration of the parameter, which characterizes ellipticity of corrugated cylindrical shells. The cross-sectional radius of curvature of the reference surface in the zone of greatest rigidity was chosen as a criterion for the possibility of using a simplified scheme. It is found that a simplified scheme can be used when the cross-section curvature radius of the reference surface of elliptical corrugated cylindrical shells in this section differs from that for circular corrugated shells by no more than 17%.

Література:

1.     Ашкенази Е.К., Гольфман И.Б., Рожков Л.П., Сидоров Н.П. Детали из стеклопластиков в судовом машиностроении. – Л: Судостроение, 1974. – 199 с.2.     Gaidaichuk V.V., Kotenko K.E. Stress - strain state of a three-layer cylindrical shell under internal axisymmetric pulse load // Strength of Materials and Theory of Structures: Scientific-and-technical collected articles – Kyiv: KNUBA, 2020.  – Вип. 105. – С. 145-151.3.     Котляров В.П., Волощенко О.І., Кузнєцов О.А., Кушніренко М.Г. Моделювання режимів биття під час обертально-коливального руху складної аеродинамічної конструкції із визначенням умов їх виникнення // Опір матеріалів і теорія споруд: наук.-тех. збірн. – К.: КНУБА, 2021. – Вип. 107. – С. 288-300.4.     Корн Г., Корн Т. Справочник по математике для научныхработников и инженеров. –М.: Наука. Гл.ред.физ.-матлит., 1968.– 720 с.5.     Лехницкий С.Г. Теория упругости анизотропного тела. –Изд. 2-е, Москва: Главная редакция физико-математической литературы издательства «Наука», 1977. – 416 с.6.     Механика композитов. Т. 8. Статика элементовконструкций / Григоренко и др. Киев: «А.С.К.», 1999.– 379 c.7.     Сопротивление материалов / Под ред. акад. АН УССР Писаренко Г.С. – 5-е изд. перераб. и доп. – К: Вища шк. Головное изд-во, 1986.–775 с.8.     Ammar I. Alsabery, Muneer A. Ismael, Engin Gedik, Ali J. Chamkha, Ishak Hashim. Transient nanofluid flow and energy dissipation from wavy surface using magnetic field and two rotating cylinders –Computers & Mathematics with Applications. –2021.–97 No 1.– P. 329-343.9.     Bochkarev S.A., Lekomtsev S.V., Matveenko V.P. Aeroelastic Stability of Cylindrical Shells with Elliptical Cross-Section. –Mech. Solids.– 2020.–No 55.–P. 728-736.10.   GrigorenkoYa.M., Rozhok L.S. Stress analysis of longitudinally corrugated hollow orthotropic elliptic cylinders –Int. App. Mech.– 2010.– 46, No 3.–Р. 255-263.11.   GrigorenkoYa.M., Rozhok L.S.Applying Discrete Fourier Series to Solve Problems of the Stress State of Hollow Noncircular Cylinders.–Int. App. Mech.– 2014.–50, No2.–Р. 105-127.12.   GodunovS. K. On a numerical solution of boundary-value problems for systems of linear ordinary differential equations–Usp. Mat. Nauk.– 1961.– 16,No 3.– Р. 171-174.13.   Hart Е.L., Hudramovich V.S. Projection-Iterative Schemes for the Implementation of Variational-Grid Methods in the Problems of Elastoplastic Deformation of Inhomogeneous Thin-Walled Structures–J. Math. Sci.– 2021. –No 254.– P. 21-38.14.   Fikhtengol’ts G.M. Course of Differential and Integral Calculus [in Russian]. –Gostekhteorizdat, Moscow–Leningrad,1949. –Vol. 3.– 728 p.Onishchenko А.M., Koretskyi A.S., Bashkevych I.V., Ostroverkh B.M., Bieliatynskyi A.O. Dam failure model and its influence on the bridge construction –Advances in Intelligent Systems and Computing.– 2021. –1258 AISC. –P. 229-237.

References:

  1. Ashkenazi Ye.K., Gol'fman I.B., Rozhkov L.P., Sidorov N.P. Detali iz stekloplastikov v sudo- i mashinostroyenii (Parts made of fiberglass in ship engineering). ‑ L: Sudostroyeniye, 1974. ‑ 199 p. (in Rusian).
  2. Gaidaichuk V.V., Kotenko K.E. Stress-strain state of a three-layer cylindrical shell under internal axisymmetric pulse load. Strength of Materials and Theory of Structures: Scientificand-technical collected articles. ‑ Kyiv: KNUBA, 2020. Issue 105. ‑ P. 145-151.
  3. Kotlyarov V.P., Voloshchenko O.I., Kuznêtsov O.A., Kushnirenko M.G. Modelirovaniye rezhimiv byttya pid chas obertal'no-kolival'nogo rukhu skladnoyi aerodinamichnoyi konstruktsii iz vyznachennyam umov ikh viniknennya (Simulation of beating modes during the rotary-oscillating movement of complex aerodynamic engineering with determination of the conditions of their occurrence). Strength of Materials and Theory of Structures: Scientificand-technical collected articles. Kyiv: KNUBA, 2021. Issue 107. ‑ P. 288-300.
  4. Korn G., Korn T. Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov (Handbook of mathematics for scientists and engineers). ‑ M.: Nauka. Gl.red.fiz.-mat lit., 1968. ‑ 720 pp.(in Rusian).
  5. Lekhnitskiy S.G. Teoriya uprugosti anizotropnogo tela (Theory of elasticity of an anisotropic body). ‑ Izd. 2-ye, Moskva: Glavnaya redaktsiya fiziko-matematicheskoy literatury izdatel'stva «Nauka», 1977. ‑ 416 pp.(in Rusian).
  6. Mekhanika kompozitov.Vol 8. Statika elementov konstruktsiy (Mechanics of composites. Vol. 8. Statics of structural elements) / Grigorenko i dr. ‑ Kiyev: «A.S.K.», 1999. ‑ 379 pp. (in Rusian).
  7. Soprotivleniye materialov (Strength of materials). Pod red. akad. AN SSSR Pisarenko G.S. 5-ye izd. pererab. idop. ‑ K: Vishchashk. Golovnoyeizd-vo, 1986, ‑ 775 pp. (in Rusian).
  8. Ammar I. Alsabery, Muneer A. Ismael, Engin Gedik, Ali J. Chamkha, Ishak Hashim. Transient nanofluid flow and energy dissipation from wavy surface using magnetic field and two rotating cylinders –Computers & Mathematics with Applications. 2021.97,No1.P. 329-343.
  9. Bochkarev S.A., Lekomtsev S.V., Matveenko V.P. Aeroelastic Stability of Cylindrical Shells with Elliptical Cross-Section.Mech. Solids. 2020.55.P. 728-736.
  10. GrigorenkoYa.M., Rozhok L.S. Stress analysis of  longitudinally corrugated hollow orthotropic elliptic cylinders. Int. App. Mech.2010.46, No 3. ‑ Р. 255-263.
  11. GrigorenkoYa.M., Rozhok L.S. Applying Discrete Fourier Series to Solve Problems of the Stress State of Hollow Noncircular Cylinders.Int. App. Mech.2014.50, No2.Р. 105-127.
  12. GodunovS. K. On a numerical solution of boundary-value problems for systems of linear ordinary differential equations.Usp. Mat. Nauk. 1961.16,No 3.Р. 171-174.
  13. Hart Е.L., Hudramovich V.S. Projection-Iterative Schemes for the Implementation of Variational-Grid Methods in the Problems of Elastoplastic Deformation of Inhomogeneous Thin-Walled Structures.J. Math. Sci.2021. Issue254.P. 21-38.
  14. Fikhtengol’ts G.M. Course of Differential and Integral Calculus. ‑ Gostekhteorizdat, Moscow–Leningrad,1949. Vol. 3, 728 pp.(in Rusian).
  15. Onishchenko А.M ,  Koretskyi A.S., Bashkevych I.V.,  Ostroverkh B.M., Bieliatynskyi A.O. Dam failure model and its influence on the bridge construction – Advances in Intelligent Systems and Computing. 2021. 1258 AISC. P. 229-237.