Аннотації

Автор(и):
Ловейкін В.С., Міщук Д.О., Міщук Є.О.
Автор(и) (англ)
Loveykin V.S., Mishchuk D.O., Mishchuk Ye.O.
Дата публікації:

25.12.2022

Анотація (укр):

В роботі представлено результати досліджень оптимізації режиму руху стріли маніпулятора, який встановлено на пружну опору з відомою жорсткістю. Мета даного дослідження полягає в зменшенні коливань стрілової системи маніпулятора, що забезпечить підвищення загальної ефективності маніпулятора, довговічності та надійності елементів його металоконструкції. Досягнення поставленої мети здійснено шляхом застосування керованого режиму роботи приводу з динамічним врівноваженням привідного механізму. Застосовуючи рівняння Лагранжа другого роду складено рівняння руху стріли маніпулятора та визначено вираз узагальненого рушійного моменту привідного механізму стрілової системи маніпулятора. В даному дослідженні розглядається лише кутове переміщення стріли маніпулятора. Незрівноважений привідний рушійний момент стріли маніпулятора оцінюється складовою сумарного інерційного моменту рухомої маси стріли і вантажу та статичним навантаженням від маси стріли і вантажу на привідний механізм. Пружна опора маніпулятора представлена у виді лінійної пружини із заданим коефіцієнтом пружності. Оскільки основним зовнішнім фактором виникнення збурення коливань в металоконструкції маніпулятора є рушійний момент привода, тому було застосовано цільову функцію оптимізації, яка оцінює середньоквадратичне значення рушійного моменту приводного механізму. Вибраний критерій оптимізації режиму руху представлено у вигляді інтегрального функціоналу, а пошук його мінімального значення здійснено із застосуванням методів варіаційного числення. Отримані результати дослідження можна застосовувати в системі керування приводом на етапі проектування маніпулятора так і в процесі його експлуатації. Також оцінено динаміку коливань подібних елементів конструкцій стрілових систем вантажопідйомних кранів. Реалізація отриманих оптимальних режимів руху може бути здійснена при використанні гідравлічного приводу.

Анотація (рус):

Анотація (англ):

The results of studies of optimizing the mode of movement of the manipulator boom, mounted on an elastic base with a known stiffness the paper presents. The purpose of this scientific research is to reduce the oscillations of the manipulator turnout system, which will increase the overall efficiency of the manipulator, durability and reliability of the metal structure elements. The implementation of this goal have achieved by applying a controlled mode of operation of the drive with dynamic balancing of the drive mechanism. Using the Lagrange equation of the second kind, the equation of motion of the manipulator boom was compile and the expression for the generalized driving moment of the drive mechanism of the manipulator boom system was determined. This study considers only the angular displacement of the manipulator boom. The unbalanced drive driving moment of the manipulator boom had estimated by the component of the total inertial moment of the moving mass of the boom and load and the static load from the mass of the boom and load on the drive mechanism. The elastic base of the manipulator was present in the form of a linear spring with a given coefficient of elasticity. Since the main external factor of oscillation, perturbation in the metal structure of the manipulator is the driving moment of the drive, so we used the target optimization function, which estimates the root mean square value of the driving moment of the drive mechanism. The main criterion for optimizing the mode of motion was present in the form of an integral functional, and the search for its minimum value is carried out using the methods of calculus of variations. The results of this work can used by the drive control system at the design stage of the manipulator and during its operation. The dynamics of oscillations of such structural elements of boom systems of cranes is also estimated. The implementation of the obtained optimal modes of movement can be carried out using a hydraulic drive.

Література:

References:

  1. Lovejkin V.S., Mishchuk D.O. Optimіzacіya rezhimіv zmіni vil'otu manіpulyatora z gіdroprivodom: monografіya (Optimization of modes of change of departure of the manipulator with the hydraulic drive: Monograph). Kyiv, CP Komprint, 2013. 206 p. [in Ukrainian]. DOI: 10.26884/damu.m13opzvmg.
  2. Lagerev I.A. Modelirovanie rabochih processov manipulyacionnyh sistem mobil'nyh mnogocelevyh transportno-tekhnologicheskih mashin i kompleksov: monografiya (Modeling of work processes of manipulation systems of mobile multi-purpose transport-technological machines and complexes: Monograph). Bryansk, RIO BGU, 2016. 371 p. [in Russian]. https://bit.ly/3HJxtIB.
  3. Sherbakov V.S., Korytov M.S., Grigorev M.G. Metod avtomaticheskogo pod"ema, vyravnivaniya opornoj platformy stroitel'noj mashiny v gorizontal'noj ploskosti i kontrolya otryva vynosnyh opor ot grunta (The method of automatic lifting, leveling the support platform of a construction machine in a horizontal plane and controlling the separation of outriggers from the ground). News of higher educational institutions. Volga region, 2010, Nr1, P. 146-154. [in Russian]. https://bit.ly/3JkHUCP.
  4. Spicyna D.N., Polikarpov K.V. Dinamika kranov s zhestkim podvesom gruza (Dynamics of fixed load cranes). Moscow, MSTU im. N. E. Bauman, 2009. 184 p. [in Russian].
  5. Krahmalev O.N. Matematicheskoe modelirovanie dinamiki manipulyacionnyh sistem promyshlennyh robotov i kranov-manipulyatorov (Mathematical modeling of the dynamics of handling systems of industrial robots and loader cranes). Bryansk, BSTU, 2012. 200 p. [in Russian].
  6. Petrov V.A. Ocenka nadezhnosti raboty sistemy podveski meliorativnoj mashiny pri dvizhenii po nerovnoj poverhnosti so sluchajnym profilem (Evaluation of the reliability of the suspension system of a melioration machine when driving on an uneven surface with a random profile). Materials of the international scientific and practical conference. Moscow, 2007, MGUP, P. 214-216. [in Russian].
  7. Kalyoncu M. Mathematical modelling and dynamic response of a multi-straight-line path tracing flexible robot manipulator with rotating-prismatic joint. Applied Mathematical Modelling, 2008, Vol.32, Issue 6, 1087-1098. DOI: 10.1016/j.apm.2007.02.032.
  8. Frolov K.V., Vorobev E.I., Popov S.A. Mekhanika promyshlennyh robotov: Ucheb. posobie dlya vuzov v 3 kn. Ch.1: Kinematika i dinamika (Mechanics of industrial robots: Textbook Part 1: Kinematics and dynamics). Moscow, High School, 1988. 304 p. [in Russian].
  9. Loveikin V.S., Mischuk D.A. (2019). Synthesis of Optimal Dynamic Mode of Manipulator Boom Movement Mounted on Elastic Base. Science & Technique, 2019, 18(1), 55-61. [in Russian]. DOI: 10.21122/2227-1031-2019-18-1-55-61.
  10. Mischuk D.O. Doslіdzhennya dinamіki roboti vstanovlenogo na pruzhnu oporu strіlovogo manіpulyatora (Research dynamics of boom manipulator mounted on the elastic support). Gіrnichі, budіvel'nі, dorozhnі ta melіorativnі mashini (Mining, constructional, road and melioration machines), 2017, Nr.90, P. 11-18. [in Ukrainian].
  11. Cheng Q. Xu W., Liu Z., Hao X. and Wang Y. Optimal Trajectory Planning of the Variable-Stiffness Flexible Manipulator Based on CADE Algorithm for Vibration Reduction Control. Bionics and Biomimetics, 2021, 9:766495. DOI: 10.3389/fbioe.2021.766495.
  12. Abe A., Komuro K. Minimum Energy Trajectory Planning for Vibration Control of a Robotic Manipulator Using a Multi-Objective Optimisation Approach. Mechatronics and Automation, 2012, Vol. 2 (4), 286–294. DOI: 10.1504/IJMA.2012.050499.
  13. Hardeman T. Modelling and Identification of Industrial Robots including Drive and Joint Flexibilities. Print Partners Ipskamp, 2008. 156 p.
  14. Moberg S. Modeling and Control of Flexible Manipulators. Dissertations. LiU-Tryck, Linköping, 2010. 101 p.
  15. Changhwan Ch., Seungho Ju., Seokhwan K., Jeongyeob Le., TokSon Ch., Sangchul Ch., Yongwoon P. A motor selection technique for designing a manipulator. ICCAS 2007: International Conference on Control, Automation and Systems, 2007. P. 2487–2492. DOI: 10.1109/ICCAS.2007.4406782.
  16. Krastanov K. About the safety by using of mobile cranes. ICONTES2017: International Conference on Technology, Engineering and Science. The Eurasia Proceedings of Science, Technology, Engineering & Mathematics (EPSTEM), 2017. Vol.1, 213-217.
  17. Vukobratovic M., Kircanski N. Real-time dynamics of manipulation robots, Berlin: Springer-Verlag, 1985. 242 p. DOI: 10.1007/978-3-642-82198-1.
  18. Pettersson M. Design Optimization in Industrial Robotics. Methods and Algorithms for Drive Train Design: Dissertations, LiU-Tryck Linköping, 2008, 81 p.
  19. Loveikin V., Romasevych Y., Shymko L., Mushtin D., Loveikin Y. The optimization of luffing and slewing  regimes of a tower crane. Journal of Theoretical and Applied Mechanics, 2021, Vol.51. P. 421-436
  20. Loveikin V. S., Romasevich Yu. O., Spodoba O. O., Loveikin A. V., Shvorov S. A. Kompleksna optimіzacіya rezhimu zmіni vil'otu strіlovoї sistemi krana-manіpulyatora (Comprehensive optimization of the mode of change of departure of the boom system of the crane-manipulator). Tekhnіka ta energetika (Engineering and energy), 2020, Nr.11 (2), 5-12. [in Ukrainian]. DOI: 10.31548/machenergy2020.02.005.