Аннотації

Автор(и):
Лізунов П.П., Погорелова О.С., Постнікова Т.Г.
Автор(и) (англ)
Lizunov P.P., Pogorelova O.S., Postnikova T.G.
Дата публікації:

14.09.2023

Анотація (укр):

В статті вивчається динамічна поведінка віброударного демпфера малої маси, який розглядається як засіб пасивного управління вібрацією. Його розрахункова схема відповідає схемі однобічного віброударного нелінійного поглинача енергії (single-sided vibro-impact nonlinear energy sink – SSVI NES). Передбачається, що він може бути використаний для ефективного гасіння коливань при різному перехідному навантаженні, а саме, імпульсному, широко смугастому, вітровому. Його динаміка та ефективність сильно залежать як від власних параметрів демпфера, так і від параметрів зовнішнього навантаження. Режими реагування та ефективність демпфера розглядаються для двох варіантів його оптимізованих параметрів при періодичному навантаженні. Також аналізується вплив характеристик пружності контактуючих поверхонь на ефективність демпфера. Показано, що в системі з більш важким демпфером та з його невеликою жорсткістю реалізуються коливальні режими з багатою складною динамікою. Проте такий демпфер виявився ефективнішим, особливо при м’якшому ударі.

Анотація (рус):

Анотація (англ):

The article studies the dynamic behavior of a low-mass vibro-impact damper, considered as a device for passive vibration control. Its design scheme corresponds to the scheme of single-sided vibro-impact nonlinear energy sink (SSVI NES), which is supposed to be used for effective vibrations attenuation under different transient loads, namely, impulsive, broadband, wind. Its dynamics and effectiveness strongly depend both on the damper own parameters and the external load parameters. We consider the response regimes and the damper efficiency for two options of its optimized parameters under periodic loading. The influence of the elasticity characteristics of the colliding surfaces on the damper effectiveness is also analyzed. We show that the modes with rich complex dynamics are implemented in a system with a heavier damper with low stiffness. Despite this, it is more effective, especially with a softer impact.

Література:

References:

  1. Ding, H., & Chen, L.-Q. (2020). Designs, analysis, and applications of nonlinear energy sinks. Nonlinear Dynamics, 100(4), 3061–3107. https://doi.org/10.1007/s11071-020-05724-1
  2. Gendelman, O. V. (2012). Analytic treatment of a system with a vibro-impact nonlinear energy sink. Journal of Sound and Vibration, 331(21), 4599–4608. https://doi.org/10.1016/j.jsv.2012.05.021
  3. Vakakis, A. F. (2018). Passive nonlinear targeted energy transfer. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2127), 20170132. https://doi.org/10.1098/rsta.2017.0132
  4. Lu, Z., Wang, Z., Masri, S. F., & Lu, X. (2017). Particle impact dampers: Past, present, and future. Structural Control and Health Monitoring, 25(1), e2058. Portico. https://doi.org/10.1002/stc.2058
  5. Ibrahim, R. A. (2008). Recent advances in nonlinear passive vibration isolators. Journal of Sound and Vibration, 314(3–5), 371–452. https://doi.org/10.1016/j.jsv.2008.01.014
  6. Saeed, A. S., Abdul Nasar, R., & AL-Shudeifat, M. A. (2022). A review on nonlinear energy sinks: designs, analysis and applications of impact and rotary types. Nonlinear Dynamics, 111(1), 1–37. https://doi.org/10.1007/s11071-022-08094-y
  7. Lee, Y. S., Vakakis, A. F., Bergman, L. A., McFarland, D. M., Kerschen, G., Nucera, F., Tsakirtzis, S., & Panagopoulos, P. N. (2008). Passive non-linear targeted energy transfer and its applications to vibration absorption: A review. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of MultiBody Dynamics, 222(2), 77–134. https://doi.org/10.1243/14644193jmbd118
  8. Wang, J., Wierschem, N. E., Spencer, B. F., & Lu, X. (2015). Track Nonlinear Energy Sink for Rapid Response Reduction in Building Structures. Journal of Engineering Mechanics, 141(1). https://doi.org/10.1061/(asce)em.1943-7889.0000824
  9. Wierschem, N. E. (2014). Targeted energy transfer using nonlinear energy sinks for the attenuation of transient loads on building structures. University of Illinois at Urbana-Champaign.
  10. Tao Li (2016). Study of nonlinear targeted energy transfer by vibro-impact. Doctorat de l’universite de Toulouse
  11. Youssef, B., &Leine, R. I. (2021). A complete set of design rules for a vibro-impact NES based on a multiple scales approximation of a nonlinear mode. Journal of Sound and Vibration, 501, 116043. https://doi.org/10.1016/j.jsv.2021.116043
  12. Bergeot, B., Bellizzi, S., & Berger, S. (2021). Dynamic behavior analysis of a mechanical system with two unstable modes coupled to a single nonlinear energy sink. Communications in Nonlinear Science and Numerical Simulation, 95, 105623. https://doi.org/10.1016/j.cnsns.2020.105623
  13. Saeed, A. S., AL-Shudeifat, M. A., Cantwell, W. J.,&Vakakis, A. F. (2021). Two-dimensional nonlinear energy sink for effective passive seismic mitigation. Communications in Nonlinear Science and Numerical Simulation, 99, 105787. https://doi.org/10.1016/j.cnsns.2021.105787
  14. Luo, J., Wierschem, N. E., Hubbard, S. A., Fahnestock, L. A., Dane Quinn, D., Michael McFarland, D., Spencer, B. F., Vakakis, A. F., & Bergman, L. A. (2014). Large-scale experimental evaluation and numerical simulation of a system of nonlinear energy sinks for seismic mitigation. Engineering Structures, 77, 34–48. https://doi.org/10.1016/j.engstruct.2014.07.020
  15. Li, W., Wierschem, N. E., Li, X., Yang, T., & Brennan, M. J. (2020). Numerical study of a symmetric single-sided vibro-impact nonlinear energy sink for rapid response reduction of a cantilever beam. Nonlinear Dynamics, 100(2), 951–971. https://doi.org/10.1007/s11071-020-05571-0
  16. AL-Shudeifat, M. A., & Saeed, A. S. (2020). Comparison of a modified vibro-impact nonlinear energy sink with other kinds of NESs. Meccanica, 56(4), 735–752. https://doi.org/10.1007/s11012-020-01193-3
  17. Farid, M. (2023). Dynamics of a hybrid cubic vibro-impact oscillator and nonlinear energy sink. Communications in Nonlinear Science and Numerical Simulation, 117, 106978. https://doi.org/10.1016/j.cnsns.2022.106978
  18. Lo Feudo, S., Job, S., Cavallo, M., Fraddosio, A., Piccioni, M. D., &Tafuni, A. (2022). Finite contact duration modeling of a Vibro-Impact Nonlinear Energy Sink to protect a civil engineering frame structure against seismic events. Engineering Structures, 259, 114137. https://doi.org/10.1016/j.engstruct.2022.114137
  19. Lizunov, P., Pogorelova, O., & Postnikova, T. (2022). Choice of the Model for Vibro-impact Nonlinear Energy Sink. Strength of Materials and Theory of Structures, 108, 63–76. https://doi.org/10.32347/2410- 2547.2022.108.63-76
  20. Lizunov, P., Pogorelova, O., & Postnikova, T. (2022). Dynamics of primary structure coupled with singlesided vibro-impact nonlinear energy sink. Strength of Materials and Theory of Structures, 109, 103–113. https://doi.org/10.32347/2410-2547.2022.109.20-29
  21. Lizunov, P., Pogorelova, O., & Postnikova, T. (2023). Vibro-impact damper dynamics depending on system parameters. Journal of Vibration Engineering & Technologies. Current Status: Under Review. Preprint Research Square DOI: 10.21203/rs.3.rs-2786639/v1
  22. Bazhenov, V., Pogorelova, O., & Postnikova, T. (2021). Crisis-Induced Intermittency and Other Nonlinear Dynamics Phenomena in Vibro-impact System with Soft Impact. Nonlinear Mechanics of Complex Structures, 185–203. https://doi.org/10.1007/978-3-030-75890-5 11
  23. Johnson, K. L. (1985). Contact Mechanics. https://doi.org/10.1017/cbo9781139171731
  24. Lamarque C. H., JaninO.(2000). Modal analysis of mechanical systems with impact non-linearities: limitations to a modal superposition. Journal of sound and vibration.  235(4), 567-609.https://doi.org/10.1006/jsvi.1999.2932