Аннотації

Автор(и):
Єгоров Є.А., Кучеренко О.Є., Репринцев О.В.
Автор(и) (англ)
Yegorov Y.A., Kucherenko O.Ye., Repryntsev O.V.
Дата публікації:

17.09.2023

Анотація (укр):

Розглядається задача моделювання оболонкової структури у вигляді вертикального сталевого резервуару. Обговорюються кілька підходів до моделювання подібних конструкцій. Досліджується поведінка зони контакту стінка-днище-основа при різних значеннях надлишкового тиску та рівнях рідкого продукту в резервуарі, визначаються умови можливого відриву днища від основи у вузлі сполучення його з циліндричною стінкою.

Анотація (рус):

Анотація (англ):

This paper presents the problem of modelling of a shell structure as a vertical steel tank with a volume of 20000 cubic meters under a combination of static loads. The total height of the cylindrical wall of the tank is 17880 mm, and its diameter is 39900 mm. The wall thicknesses have been determined according to the design requirements of strength and buckling. The geometric model of the object has an axisymmetric form. The task is to perform the analysis of the stress-deformed state of the cylindrical wall and the contact zone of the wall with the foundation under different loads. The type of the contact is "Frictional" with a coefficient of friction equal to 0.45. The lower part of the foundation has been fixed. We have also restricted the radial movement of the upper part of the tank. Modelling has been carried out using the ANSYS simulation software. In three-dimensional modelling, finite elements of the SHELL281 type have been used. When solving an axisymmetric problem in a two-dimensional formulation, we have used PLANE183 finite elements. We have verified the model by comparing the radial displacements of the shell obtained using numerical simulation with the values calculated analytically. The discrepancy between the data does not exceed 5%, which indicates the adequacy of the finite element model. We have performed the analysis for non-standard operating conditions, which suppose the excessive internal pressure in the tank (2.5 and 3 kPa against 2 kPa under normal conditions). The contact "bottom - foundation" with a one-way connection allows separation of the bottom from the foundation. The complete detachment occurs under a specific combination of excessive and hydrostatic pressures. For certain levels of liquid in the tank, the gap decreases almost to zero, followed by a noticeable increase. This rapid change can be explained by the fact that with an increase in the hydrostatic pressure the effect of separation due to the excessive pressure decreases, and then the process of internal separation occurs, caused by the increasing moment from hydrostatic pressure.

Література:

1.     Priestley M.J.N. Analysis and design of circular prestressed concrete storage tanks // PCI Journal. – 1985. – Vol. 30. – Issue 4. - P. 64–85.2.     Гудрамович В.С., Деменков А.Ф., Егоров Е.А., Репринцев А.В. О влиянии технологи изготовления на несущую способность стальных резервуаров // Проблемы прочности. - 2006. – №4. – С. 125-131.3.     Деменков А.Ф., Репринцев А.В., Самарская Е.В. Влияние технологических и эксплуатационных дефектов на прочность вертикальных резервуаров для хранения нефти и нефтепродуктов // Вісник Дніпропетровського ун-ту. – Дніпропетровськ: ДНУ, 2006. – № 2/2, Вип. 10. – С. 51 – 55.4.     Tarasenko A.A., Chepur P.V., Chirkov S.V., Tarasenko D.A. Steel Storage Oil Tank Simulated Using Ansys Workbench 14.5 // Fundamental research. – 2013. - №10. С.3404-3408.5.     Krivenko O.P., Vorona Yu.V., Kozak A.A. Finite element analysis of nonlinear deformation, stability and vibrations of elastic thin-walled structures // Strength of Materials and Theory of Structures: Scientific-and-technical collected articles. – K.: KNUBA, 2021. – Issue 107. – P. 20-34.6.     Єгоров Є.А., Кучеренко О.Є. Щодо оптимальної топології підпірної стінки // Опір матеріалів і теорія споруд: наук.-тех. збірн. – К.: КНУБА, 2022. – Вип. 108. – С. 369-376.7.     Cavalieri F.J, Cardona A. An augmented lagrangian method to solve three-dimensional nonlinear contact problems // Latin American Applied Research. – 2012. - Vol. 42. -  №3. – P. 281-289.8.     Timoshenko S., Woinowsky-Kreiger S. Theory of plates and shells. New York: McGrow-Hill Book Company. - 1959.       9.  Wickham H. ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag. – 2016.

References:

  1. Priestley M.J.N. Analysis and design of circular prestressed concrete storage tanks // PCI Journal. – 1985. – Vol. 30. – Issue 4. - P. 64–85.
  2. Hudramovych V.S., Demenkov A.F., Egorov E.A., Repryntsev A.V. O vliianii tehnologii izgotovleniia na nesushchuiu sposobnost stalnikh rezervuarov. (On the influence of the technology of manufacturing on the load-bearing capacity of steel tanks) // Problemy prochnosty. - 2006. – №4. – P. 125-131.
  3. Demenkov A.F., Repryntsev A.V., Samarskaia E.V. Vliianye tehnologycheskyh i ekspluatatsyonnyh defektov na prochnost vertykalnih rezervuarov dlia hraneniia nefty i nefteproduktov. (Influence of technological and operational defects on the strength of vertical tanks for oil and petroleum products) // Visnyk Dnipropetrovskoho un-tu. – Dnipropetrovsk: DNU, 2006. – № 2/2, Issue 10. – P. 51 – 55.
  4. Tarasenko A.A., Chepur P.V., Chirkov S.V., Tarasenko D.A. Steel Storage Oil Tank Simulated Using Ansys Workbench 14.5 // Fundamental research. – 2013. - №10. С.3404-3408.
  5. Krivenko O.P., Vorona Yu.V., Kozak A.A. Finite element analysis of nonlinear deformation, stability and vibrations of elastic thin-walled structures // Strength of Materials and Theory of Structures: Scientific-and-technical collected articles. – K.: KNUBA. - 2021. – Issue 107. – P. 20-34.
  6. Yegorov Y., Kucherenko O. Optimal topology of retaining wall // Strength of Materials and Theory of Structures: Scientific-and-technical collected articles. – K.: KNUBA. - 2022. – Issue 108. – P. 369-376.
  7. Cavalieri F.J, Cardona A. An augmented lagrangian method to solve three-dimensional nonlinear contact problems // Latin American Applied Research. – 2012. - Vol. 42. -  №3. – P. 281-289.
  8. Timoshenko S., Woinowsky-Kreiger S. Theory of plates and shells. New York: McGrow-Hill Book Company. - 1959.
  9. Wickham H. ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag. – 2016.