Аннотації

Автор(и):
Ловейкін В.С., Міщук Д.О., Ромасевич Ю.О.
Автор(и) (англ)
Loveikin V.S., Mishchuk D.O., Romasevych Yu.O.
Дата публікації:

17.09.2023

Анотація (укр):

Метою представленого дослідження є вирішення задачі зменшення до мінімуму коливаньстрілової системи маніпулятора на пружній основі. Для цього в якості критерію оптимізації режиму руху стрілової системи маніпулятора запропоновано використати середньоквадратичне значення швидкості зміни рушійного моменту приводу, оскільки ця величина силового навантаження є основним зовнішнім фактором виникнення коливань в елементах стрілової системи маніпулятора. Запропоновано застосувати цільову функцію оптимізації режиму руху у вигляді середньоквадратичного значення швидкості зміни рушійного моменту приводу. Рушійний момент приводу знайдено з динамічних рівнянь руху маніпулятора. Швидкість зміни рушійного моменту визначено, як похідну за часом від виразу рушійного моменту приводу. Такий критерій оптимізації режиму руху являє собою інтегральний функціонал, мінімізація якого здійснена методами варіаційного числення.

Анотація (рус):

Анотація (англ):

It was established the presence of boom system oscillations in the process of changing the departure into previous studies of the optimization of the movement mode of the manipulator on an elastic base according to the criterion of the root mean square value of the driving moment of the drive. The purpose of the presented article is to solve the problem of reducing these fluctuations to a minimum. In this work, optimization was performed, where as a criterion for optimizing the motion mode of the boom system of the manipulator, it is proposed to use the root mean square value of the speed of change of the driving torque of the drive. Since this amount of power load is the main external factor of the occurrence of oscillations in the elements of the boom system of the manipulator. The driving torque of the drive was find from the dynamic equations of motion of the manipulator. The rate of change of the driving torque it was define as the time derivative of the driving torque expression by the drive. Such a criterion for optimizing the traffic mode is an integral functional. Its minimization it was carry out by methods of variational calculus. The results of the conducted research made it possible is significantly reduce the oscillations of the elements of the boom system of the manipulator on an elastic basis during the movement in comparison with the criterion of the root mean square moment. As result, to create a drive control system that allows to implement the obtained optimal mode of movement.

Література:

References:

  1. Lovejkin V.S., Mishchuk D.O. Optimіzacіya rezhimіv zmіni vil'out manіpulyatora z gіdroprivodom: monografіya (Optimization of modes of change of departure of the manipulator with the hydraulic drive: Monograph). Kyiv, CP Komprint, 2013. 206. [in Ukrainian]. DOI: 10.26884/damu.m13opzvmg.
  2. Lovejkin V.S., RomasevichYu.O., Spodoba O.O. Eksperimentalni doslidzhennya rezhimiv ruhu krana-manipulyatora. Chastina 1 (Experimental studies of crane manipulator movement modes. Part 1).Mashinobuduvannya(Mechanical engineering), 2021, Nr.28, 5-17.[in Ukrainian].DOI: 10.32820/2079-1747-2021-28.
  3. Loveikin V.S., RomasevychYu.O., Spodoba O.O., Loveikin A.V., Pochka K.I. Mathematical model of the dynamics change departure of the jib system manipulator with the simultaneous movement of its links. ‑ Strength of Materials and Theory of Structures, 2020, Issue 104, 175-190. DOI: 10.32347/2410-2547.2020.104.175-190.
  4. Misсhuk D.O., Lovejkin V.S.Matematichne modelyuvannya zmini vilotu vantazhu manipulyatorom z gidroprivodom (Mathematical modeling of change of departure of cargo by the manipulatorwith the hydraulic drive). Girnichi, budivelni, dorozhni I meliorativni mashini (Mining, constructional, road and melioration machines), 2012, Nr.79, 9-15. [in Ukrainian].
  5. Zablonskij K.I., Monashko N.T., Shecin B.M. Optimalnyj sintez shem manipulyatorov promishlenyh robotov (Optimal synthesis of industrial robot manipulator circuits). Kyiv, Tehnika, 1989, 148.
  6. Loveykin V.S., Mishchuk D.O. Analiz utochnennoj matematicheskoj modeli strelovoj sistemy manipulyatora s uprugim osnovaniem (Analysis of the refined mathematical model of the boom system of a manipulator with an elastic base). Girnichi, budivelni, dorozhniimeliorativnimashini (Mining, constructional, road and melioration machines), 2022, Nr.99, 5-14. DOI: 10.32347/gbdmm2022.99.0101.
  7. Loveykin V.S., Mishchuk D.O.,Mishchuk Ye.O. Optimization of manipulator's motion mode on elastic base according to the criteria of the minimum central square value of drive torque. Strength of Materials and Theory of Structures, 2022, Issue 109. DOI: 10.32347/2410-2547.2022.109.403-415.
  8. Kalyoncu M. Mathematical modelling and dynamic response of a multi-straight-line path tracing flexible robot manipulator with rotating-prismatic joint. Applied Mathematical Modelling, 2008, Vol.32, Issue 6, 1087-1098. DOI: 10.1016/j.apm.2007.02.032.
  9. Lovejkin V.S., Mishchuk D.A. Synthes I softheoptimal dynamic mode of movement of the manipulator boommountedon an elastic base. Scienceandtechnology, 2019, Vol.18, Nr.1, 55-61.DOI:10.21122/2227-1031-2019-18-1-55-61.
  10. Mishchuk D. O. Doslidzhennya dinamiki robotiv stanovlenogo napruzhnu oporu strilovogo manipulyatora (Study of the dynamics of the boom manipulator mounted on an elastic base). Girnichi, budivelni, dorozhni ta meliorativnimashini (Mining, constructional, road and melioration machines), 2017, Nr.90, 11-18. [in Ukrainian].
  11. Cheng Q., Xu W., Liu Z., Hao X. and Wang Y. Optimal Trajectory Planning of the Variable-Stiffness Flexible Manipulator Based on CADE Algorithm for Vibration Reduction Control. Bionics and Biomimetics, 2021, 9:766495. DOI:10.3389/fbioe.2021.766495.
  12. Akira Abe and Komuro K. Minimum Energy Trajectory Planning for Vibration Control of a Robotic Manipulator Using a Multi-Objective Optimisation Approach. Mechatronics and Automation, 2012, Vol.2 (4), 286–294. DOI:10.1504/IJMA.2012.050499.
  13. Hardeman T. Modelling and Identification of Industrial Robots including Drive and Joint Flexibilities. Print Partners Ipskamp, 2008, 156.
  14. Moberg S. Modeling and Control of Flexible Manipulators. Dissertations, LiU-Tryck, Linköping, 2010, 101.
  15. Changhwan Ch., SeunghoJu., Seokhwan K., Jeongyeob Le., TokSon Ch., Sangchul Ch., Yongwoon P. A motor selection technique for designing a manipulator. ICCAS 2007 – International Conference on Control, Automation and Systems, 2007, 2487–2492. DOI:10.1109/ICCAS.2007.4406782.
  16. Krastanov K. About the safety by using of mobile cranes. ICONTES2017: International Conference on Technology, Engineering and Science. The Eurasia Proceedings of Science, Technology, Engineering & Mathematics (EPSTEM), 2017. Vol.1, 213-217.
  17. Vukobratovic M., Kircanski N. Real-time dynamics of manipulation robots, Berlin: Springer-Verlag, 1985. 242 p. DOI: 10.1007/978-3-642-82198-1. 
  18. Pettersson M. Design Optimization in Industrial Robotics. Methods and Algorithms for Drive Train Design: Dissertations, LiU-Tryck Linköping, 2008, 81 p.
  19. Loveikin V., Romasevych Y., Shymko L., Mushtin D., Loveikin Y. The optimization of luffing and slewing regimes of a tower crane. Journal of Theoretical and Applied Mechanics, Sofia (Bulgaria), Vol.51 (2021) pp. 421-436.
  20. Loveikin V. S.,RomasevichYu. O., Spodoba O. O., Loveikin A. V., Shvorov S. A. Kompleksna optimizaciya rezhimu zmini vilotu strilovoyi sistemi krana-manipulyatora (Complex optimization of the mode of change of departure of the jib system of the manipulator crane). Tehnika ta energetika (Technology and energy), 2020, Nr.11(2), 5-12. DOI: 10.31548/machenergy2020.02.005.
  21. Romasevych Y., Loveikin V., Loveikin Y. Development of new Rotating ring topology of PSO-algorithm. 2021 IEEE 2nd KhPI Week on Advanced Technology, KhPI Week 2021 - ConferenceProceedings, 2021, 79.