Аннотації

Автор(и):
Пискунов С.О., Бахтаваршоєв Т.А., Самофал К.І.
Автор(и) (англ)
Pyskunov S.O., Bakhtavarshoev Т.А., Samofal K.I.
Дата публікації:

17.09.2023

Анотація (укр):

Однією з відмінних властивостей композитних матеріалів є їх анізотропія, що дозволяє, зокрема, максимально використовувати їх міцністні властивості. Завдяки новим технологіям, зокрема 3-D друку, з’являються нові можливості цілеспрямованого формування структури композитних матеріалів і їх властивостей. Важливим питанням при цьому є забезпечення міцності, яка визначається в залежності від структури композиту в цілому та механічних характеристик його окремих компонентів. В статті провдено огляд відомих критеріїв міцності (Гольденблата-Копнова, Мізеса–Хілла, Фішера, Хофмана, Цая-Ву та інших), зв’язку між ними та даних про достовірність застосування при тих чи інших умовах навантажень. Частина з них передбачають однакові властивості матеріалів в умовах стиску і розтягу та одержано шляхом узагальнення класичних теорій міцності і пластичності ізотропних тіл. Більшого практичного застосування набули критерії, що ураховують різний опір композитного матеріалу розтягу і стиску, що є притаманним багатьом композитним матеріалам. При виборі критерію міцності, з точки зору структури варто розглядати окремо шаруваті і армовані композиційні матеріали, а з точки зору навантаження – статичний або циклічний характер його прикладання. Перелічені вище критерії не ураховують накопичення пошкоджень у матеріалі, які виникають під дією зовнішніх навантажень. Кількість таких відомих критеріїв є обмеженою, оскільки на сьогодні відсутній метод прогнозування стадії розсіяного руйнування композиційних матеріалів з врахуванням анізотропії механічних властивостей, а також не обґрунтовано вибір параметра пошкоджуваності. Зазначається перспективність розробки таких критеріїв для уточнення отримуваних висновків щодо несучої здатності виробів з композитних матеріалів при різному характері прикладання зовнішніх навантажень.

Анотація (рус):

Анотація (англ):

One of the distinctive properties of composite materials is their anisotropy, which allows, in particular, to use of their strength properties maximum. Thanks to new technologies, in particular 3-D printing, there are new opportunities for purposeful formation of the structure of composite materials and their properties. An important issue here is ensuring strength, which is determined depending on the structure of the composite as a whole and the mechanical characteristics of its individual components. The article reviews well-known strength criteria (Goldenblatt-Kopnov, Mises-Hill, Fisher, Hoffman, Tsai-Wu, and others), the relationship between them, and data on the reliability of their application under certain load conditions. Some of them assume the same properties of materials under conditions of compression and tension and are obtained by generalizing the classical theories of strength and plasticity of isotropic bodies. The criteria that take into account the different resistance of the composite material to tension and compression, which is inherent in many composite materials, have gained greater practical application. When choosing a strength criterion, from the point of view of structure, it is worth considering separately layered and reinforced composite materials, and from the point of view of load - the static or cyclic nature of its application. The criteria listed above do not take into account the damage accumulation in the material that occurs under the influence of external loads. The number of such known criteria is limited, because today there is no method for predicting the stage of scattered fracture of composite materials taking into account the anisotropy of mechanical properties, and the choice of the damage parameter is not justified. The perspective of developing such criteria for clarifying the received conclusions regarding the load-bearing capacity of products made of composite materials under different types of application of external loads is noted.

Література:

  1. Ашкенази Е.К., Ганов Э.В. Анизотропия конструкционных материалов. Справочник. – Л. Машиностроение, 1980. – 247 с.
  2. Бобир М.І. Критерій граничного стану композиційних матеріалів // Mechanics and Advanced Technologies. –  2022. – Vol. 6, No. 3. – Р.229-236.
  3. Божидарник В.В., Сулим Г.Т. Елементи теорії пластичності та міцності. – Львів, Світ. – 1999.
  4. Божидарнік В.В., Андрейків О.Е., Сулим Г.Т. Механіка руйнування, міцність і довговічність неперервно армованих композитів: монографія у 2-х т. – Львів, 2007.
  5. Гольденблат І.І., Копнов В. А., Бажанов В.Л. Длительная прочность в машиностроении . −  М.: Машиностроение, 1977. – 460 с.
  6. Гребенюк С.Н. Мелащенко О.П. Использование различных критериев для оценки прочности волокнистых композитов //  Збірник наукових праць Харківського університету Повітряних Сил. – 2012, Випуск 3(32). – С.134-136.
  7. Карпов Я.С., Ставиченко В.Г. Сравнительный анализ подходов к оценке прочности слоистых композиционных материалов // Проблемы прочности. – 2008, № 4. – С.36-42.
  8. Ковальчук Б.І., Кулік О.В. Критерій граничного стану пластичних анізотпропних // Вісник КПІ: серія «Машинобудування». - № 63, 2011. – С.6-9.
  9. Лебедев А.А.,Ковальчук Б. И., Гигиняк Ф. Ф., Ламашевский В. П. Механические свойства конструкционных материалов при сложном напряженном состоянии / Под общ. ред. А. А. Лебедева. - Киев: Издательский дом “Ин Юре”, 2003. - 540 с.
  10. Моваггар А., Львов Г.И. Энергетическая модель усталостной прочности композиционных материалов // Тематический выпуск Вестника НТУ «ХПИ» «Динамика и прочность машин». – Х.: НТУ «ХПИ», 2010. – № 37. – C. 111-122.
  11. Поберейко С.Б., Яковенко А.А., Мисик М.М., Кунинець Ю.П. Порiвняльний аналіз результатів теоретичних досліджень граничного напруженого стану анізотропних матеріалів // Науковий вісник НЛТУ. – №27(9) – С.128-132.
  12. Работнов Ю.Н. Ползучесть элементов конструкций. – М: Наука, 1966. – 752 с.
  13. Ромащенко В.А. Оценка прочности композитных и металлокомпозитных цилиндров при импульсном нагружении. Сообщение 1. Правила выбора и сравнительный анализ различных критериев прочности анизотпропных материалов // Проблемы прочности. – 2012 . – №4 . – С.42-57.
  14. Чжэн Цз., Махарадж К., Лю Цз., Чай Х., Лю Х., Деар Дж. П. Сравнительное изучение критериев разрушения для предсказания начала повреждения в волокнисто-армированных композитах // Механика композитных материалов.— 2022. — Т. 58, № 1. — С. 175—196.
  15. Fisher H. How to predict structural behavior of R.P. Laminates. – Mod. Plast., 1960. – № 6. – P. 65-68.
  16. Onkar A. K., Upadhyay C. S., and Yadav D. Probabilistic failure of laminated composite plates using the stochastic finite element method // Comp. Struct. – 2007. – 77. – P. 79 – 91.
  17. Shukaev S., Rubashevskyi V. Effect of constructive parameters on tensile strength of 3D-printed PLA-graphite composite // ACTA TECHNICA NAPOCENSIS-Series: APPLIED MATHEMATICS, MECHANICS, and ENGINEERING. – Vol.65. – 2022. – P.239-244.
  18. Tsai S.W., Wu E.M. A general theory of strength for anisotropic materials // J.Comp.Mater. – 1971 – Vol.5. – P.58-80.
 

References:

1.     Ashkenazy Ye.K., Hanov E.V. Anyzotropyia konstruktsyonnykh materyalov. Spravochnyk. [Anisotropy of structural materials. Directory]– L. Mashynostroenye, 1980. – 247 p. [in Russian].2.     Bobyr M.I. Kryterii hranychnoho stanu kompozytsiinykh materialiv [Criterion of the limit state of composite materials] // Mechanics and Advanced Technologies. –  2022. – Vol. 6, No. 3. – Р.229-236  [in Ukrainian].3.     Bozhydarnyk V.V., Sulym H.T. Elementy teorii plastychnosti ta mitsnosti. [Elements of the theory of plasticity and strength]– Lviv, Svit. – 1999. [in Ukrainian].4.     Bozhydarnik V.V., Andreikiv O.E., Sulym H.T. Mekhanika ruinuvannia, mitsnist i dovhovichnist neperervno armovanykh kompozytiv: monohrafiia.[ Fracture mechanics, strength and durability of permanently reinforced composites: monograph] – Lviv, 2007. [in Ukrainian].5.     Goldenblat, I. I., Bazhanov, V. L., Kopnov, V. A.  Dlitelnaya prochnost v mashinostroyenii [Long-term strength in mechanical engineering]. −  Moscow: Mashinostroyeniye, 1977. – 460 p. [in Russian].6.     Hrebeniuk S.N. Melashchenko O.P. Yspolzovaye razlychnykh kryteryev dlia otsenky prochnosty voloknystikh kompozytov [Using of Different Criteria to Evaluate the Strength of Fiber Composites] // Collection of scientific works of Kharkiv Air Force University. – 2012, Issue 3(32). –  P.134-136. [in Russian].7.     Karpov Ya.S., Stavychenko V.H.  Sravnytelnyi analyz podkhodov k otsenke prochnosty sloystykh kompozytsyonnykh materyalov [Comparative analysis of approaches to assessing the strength of layered composite materials] // Strength of materials. – 2008, № 4. – PP.36-42. [in Russian].8.     Kovalchuk B.I., Kulik O.V. Kryterii hranychnoho stanu plastychnykh anizotpropnykh materialiv [Criterion of the limiting state of plastic anisotropy materials] // Bulletin of KPI: "Mechanical Engineering" series. - No. 63, 2011. – PP.6-9. [in Russian].9.     Lebedev A.A.,Kovalchuk B. Y., Hyhyniak F. F., Lamashevskyi V. P. Mekhanycheskye svoistva konstruktsyonnykh materyalov pry slozhnom napriazhennom sostoianyy  [Mechanical properties of structural materials under complex stress state ] / Under the municipality ed. A. A. Lebedev. - Kyiv: "In Yure" Publishing House, 2003. – 540 p. [in Russian].10.   Movahhar A., Lvov H.Y. Enerhetycheskaia model ustalostnoi prochnosty kompozytsyonnykh materyalov [Energy model of fatigue strength of composite materials] // Thematic issue of the Bulletin of the NTU "Khpy" "Dynamics and strength of machines". – Kh.: NTU "Khpy", 2010. – No.37. – PP. 111-122. [in Russian].11.   Pobereiko S.B., Yakovenko A.A., Mysyk M.M., Kunynets Yu.P. Porvnialnyi analiz rezultativ teoretychnykh doslidzhen hranychnoho napruzhenoho stanu anizotropnykh materialiv [Comparative analysis of the results of theoretical studies of the ultimate stress state of anisotropic materials] // Scientific Bulletin of UNFU  – No. 27(9). - P. 128-132. [in Russian].12.   Rabotnov Yu.N. Polzuchest elementov konstruktsyi [Creep of structural elements].– Moscow: Nauka, 1966. – 752 p. [in Russian].13.   Romashchenko V.A. Otsenka prochnosty kompozytnыkh y metallokompozytnыkh tsylyndrov pry ympulsnom nahruzhenyy. Soobshchenye 1. Pravyla vybora y sravnytelnyi analyz razlychnykh kryteryev prochnosty anyzotpropnykh materyalov [Evaluation of the strength of composite and metal-composite cylinders under impulse loading. Message 1. Selection rules and comparative analysis of various strength criteria of anisotropy materials] // Strength of materials. - 2012 . – №4 . – PP.42-57. [in Russian].14.   Zheng J., Maharaj C., Liu J., Chai H., Liu H., Dear. J. P. Sravnytelnoe yzuchenye kryteryev razrushenyia dlia predskazanyia nachala povrezhdenyia v voloknysto-armyrovannykh kompozytakh [Comparative study of failure criteria for predicting the onset of damage in fiber-reinforced composites] // MECHANICS OF COMPOSITE MATERIALS. –  2022. –  Vol. 58, No.1. – P.175– 196.15.   Fisher H. How to predict structural behavior of R.P. Laminates. – Mod. Plast., 1960. – № 6. – P. 65-68.16.   Onkar A. K., Upadhyay C. S., and Yadav D. Probabilistic failure of laminated composite plates using the stochastic finite element method // Comp. Struct. – 2007. – 77. – P. 79 – 91.17.   Shukaev S., Rubashevskyi V. Effect of constructive parameters on tensile strength of 3D-printed PLA-graphite composite // ACTA TECHNICA NAPOCENSIS-Series: APPLIED MATHEMATICS, MECHANICS, and ENGINEERING. – Vol.65. – 2022. – P.239-244.Tsai S.W., Wu E.M. A general theory of strength for anisotropic materials // J.Comp.Mater. – 1971 – Vol.5. – P.58-80.