Ulitinas Т., Kalanta S., Blaževičius G., Atkočiūnas J.
Дата публікації:


Анотація (укр):

Анотація (рус):

Анотація (англ):

In this paper, the problems of ultimate limit load of spherical shell are formulated and solved. An equilibrium finite element developed by the method of Bubnov-Galerkin is suggested. Equilibrium and geometrical equations are created for this element and, based on these equations, the mathematical models of ultimate limit external load optimization problems for the shell structures are constructed. These are nonlinear mathematical programming problems. The methodology is illustrated by the numerical examples. The solution results are obtained for the finite elements of various sizes and show very high accuracy of the suggested element and convergence of the results.



  1. Fraeijs de Venbeke, 2001. Displacement and Equilibrium Models in the Finite Element Method, International Journal of Numerical Methods in Engineering 52: pp. 287-342.
  2. Belytschko, T., Liu, W. K., Moran, B. 2000. Nonlinear finite elements for continua and structures. New York: John Wiley & Sons Ltd.
  3. Čyras, A. 1990. Statybinė mechanika. Vilnius: Mokslas, p.448.
  4. Kalanta, S., 1995. The equilibrium finite element in computation of elastic structures, Statyba 1(1), pp. 25-47 (in Russian).
  5. Kalanta, S., 1996. The problems of limit load analysis and optimization using equilibrium finite elements, Statyba 3(7), pp. 6-22 (in Russian).
  6. Kalanta, S., Atkočiūnas, J., Ulitinas, T., 2012. The discrete model and the analysis of a spherical shell by finite equilibrium elements, Mechanika 18(3), pp. 266-272.
  7. Karkauskas, R.; Krutinis, A.; Atkočiūnas, J.; Kalanta, S.; Nagevičius, J. “Computer-aided solution of structural mechanics problem”. Vilnius: Science and Encyclopaedia Publisher, p. 264.
  8. Hinton, E., Sienz, J., Ozakca, M. 2003. Analysis and Optimization of Prismatic and Axisymetric Shell Structures. Publisher: Springer. 496 p.
  9. Venskus, A., Kalanta S., Atkočiūnas J., Ulitinas T. 2010. Integrated load optimization of elastic-plastic axisymmetric plates at shakedown, Journal of Civil Engineering and Management 16, pp. 203-208.
  10. Atkočiūnas, J., 2011. Optimal Shakedown Design of Elastic-Plastic Structures. Vilnius: Technika, p. 300. ISBN 978-609-457-062-9.
  11. Chakrabarty, J., 2006. Theory of plasticity. Amsterdam: Elsevier, p. 877.
  12. Čyras, A. 1983. Mathematical models for the analysis and optimization of elastoplastic structures. Chichester: Ellis Horwood Lim. 121 p.
  13. Perelmuter, A.V., Slivker, V.I. 2011. Computational models of structures and the possibility of their analysis. p. 736. ISBN: 978-5-940747-10-9 (in Russian).
  14. Pham, D.C., 2003. Plastic collapse of a circular plate under cycling load, International Journal of Plasticity. 19, pp. 547-559.