Аннотації

Автор(и):
Bazhenov V.A., Pogorelova O.S., Postnikova T.G., Lukianchenko O.O.
Автор(и) (англ)
Bazhenov V.A., Pogorelova O.S., Postnikova T.G., Lukianchenko O.O.
Дата публікації:

25.12.2018

Анотація (укр):

Хаотична поведінка динамічних систем, сценарії їхніх переходів до хаосу, явище переміжності – це є сфера нелінійної динаміки, що широко досліджується вченими різних країн. Особливу цікавість викликає вивчення цих явищ в негладких динамічних системах, якими і є віброударні системи. В цій статті ми використовуємо відносно молодий математичний апарат – безперервне вейвлет перетворення CWT – для дослідження хаотичної поведінки та зокрема переміжності в сильно нелінійної негладкій розривний віброударній системі з двома ступнями вільності. Ми показуємо, що застосування CWT дозволяє упевнено та надійно визначити хаотичну поведінку та переміжність, дає можливість демонструвати сценарій переходу до хаосу через переміжність та розрізнювати і аналізувати ламінарну і турбулентну фази.

Анотація (рус):

Анотація (англ):

Chaotic behaviour of dynamical systems, their routes to chaos, and the intermittency are interesting and investigated subjects in nonlinear dynamics. The studying of these phenomena in non-smooth dynamical systems is of the special scientists’ interest. In this paper we apply relatively young mathematical tool – continuous wavelet transform CWT – for investigating the chaotic behavior and intermittency in particular in strongly nonlinear non-smooth discontinuous 2-DOF vibroimpact system. We show that CWT applying allows to detect and determine the chaotic motion and the intermittency with great confidence and reliability, gives the possibility to demonstrate route to chaos via intermittency, to distinguish and analyze the laminar and turbulent phases.

Література:

References:

1.       R. Polikar. The wavelet tutorial. Ames, Jowa. — 1996.2.       Dyakonov V.P. Wavelets. From theory to practice. Second edition, revised and supplemented / V.P. Dyakonov. — M. : SOLON-Press, 2010. — 400 p.3.       Chui C.K. Wavelets: a tutorial in theory and applications //First and Second Volume of Wavelet Analysis and Its Applications. – 1992.4.       Daubechies I. Ten lectures on wavelets. – Siam, 1992. – V. 61.5.       Astafieva N.M. Wavelet analysis: basic theory and some applications //Uspekhi fizicheskikh nauk. – 1996. – V. 166. – №. 11. – P. 1145-1170.6.       Короновский А.А., Храмов А.Е. Непрерывный вейвлетный анализ и его приложения. – М. : Физматлит, 2003. – 176 p.7.       Павлейно М.А., Ромаданов В.М. Спектральные преобразования в MatLab. – 2007.8.       https://www.mathworks.com/help/wavelet/ref/cwt.html9.       Moon F.C. Chaotic vibrations: an introduction for applied scientists and engineers. – New York : Wiley, 1987. –  219 P.10.    Kuznetsov S.P. Dynamical chaos //Moscow: Fizmatlit.-2006.-356 P. – 2001.11.    Afraimovich V.S., Shilnikov L.P. Invariant two-dimensional tori, their breakdown and stochasticity //Amer. Math. Soc. Transl. – 1991. – V. 149. – №. 2. – P. 201-212.12.    Schuster H.G. Deterministic Chaos. An Introduction 2nd Revised Edition. – 1988.13.    Bazhenov V.A., Pogorelova O.S., Postnikova T.G. Breakup of Closed Curve – Quasiperiodic Route to Chaos in Vibroimpact System//Discontinuity, Nonlinearity, and Complexity.–2019. – V. 8. – №. 3. – P. 275-288. (in press)14.    Bazhenov, V.A., Pogorelova, O.S. & Postnikova, T.G. Invariant torus break-down in vibroimpact system – route to crisis? //Strength of Materials and Theory of Structures. – 2018. – Т. 100. – P. 3-17.15.    Manneville P., Pomeau Y. Different ways to turbulence in dissipative dynamical systems //Physica D: Nonlinear Phenomena. – 1980. – Т. 1. – №. 2. – P. 219-226.16.    A.V. Krysko, M.V. Zhigalov, V.V. Soldatov, M.N. Podturkin. The best wavelet selection at the nonlinear flexible beams vibrations analysis with transversal displacement//Bulletin of the Saratov State Technical University. – 2009. – V. 3. – №. 1.17.    Murguía J.S. et al. Wavelet characterization of hyper-chaotic time series //Revista Mexicana de Física. – 2018. – Т. 64. – №. 3. – С. 283-290.18.    Murguia J.S., Campos-Cantón E. Wavelet analysis of chaotic time series //Revista mexicana de física. – 2006. – V. 52. – №. 2. – P. 155-162.19.    Rubežić V., Djurović I., Sejdić E. Average wavelet coefficient-based detection of chaos in oscillatory circuits //COMPEL-The international journal for computation and mathematics in electrical and electronic engineering. – 2017. – V. 36. – №. 1. – P. 188-201.20.    Xu G.S., Wan B.N., Zhang W. Application of wavelet multiresolution analysis to the study of self-similarity and intermittency of plasma turbulence //Review of scientific instruments. – 2006. – V. 77. – №. 8. – P. 083505.21.    Короновский А. А., Храмов А. Е. Об эффективном анализе перехода к хаосу через перемежаемость с помощью вейвлетного преобразования //Письма в ЖТФ. – 2001. – Т. 27. – №. 1. – С. 3.22.    Болецкая Т.К., Афонин В.В. Использование вейвлет-анализа для исследования перемежаемости в динамических нелинейных системах // Новосибирский государственный университет. – Новосибирский государственный университет, 2011.23.    Bazhenov V.A. et al. Numerical Bifurcation Analysis of Discontinuous 2-DOF Vibroimpact System. Part 2: Frequency-Amplitude response //Journal of Applied Nonlinear Dynamics.–2016. – 2016.24.    Bazhenov, V.A., Pogorelova, O.S. & Postnikova, T.G. Lyapunov exponents estimation for strongly nonlinear nonsmooth discontinuous vibroimpact system. //Strength of Materials and Theory of Structures. – 2017. – V. 99. – P. 90-105.