Аннотації

Автор(и):
Кривенко О.П.
Автор(и) (англ)
Krivenko O.P.
Дата публікації:

25.12.2018

Анотація (укр):

Розглянута методика дослідження власних коливань тонкостінних оболонкових конструкцій з урахуванням дії статичного навантаження. Методика спирається на комплексний підхід, що поєднує скінченно-елементний метод дослідження геометрично нелінійного деформування, стійкості та позакритичної поведінки тонких неоднорідних оболонок та модальний аналіз оболонок з урахуванням наявності напруженого стану на кожному кроці навантаження. Виконано аналіз частот і форм власних коливань тонкої ребристою панелі, що шарнірно оперта по контуру та навантажена рівномірним тиском.

Анотація (рус):

Рассматривается методика исследования собственных колебаний тонкостенных оболочечных конструкций с учетом приложенной статической нагрузки. Методика опирается на комплексный подход, сочетающий конечно-элементный метод исследования геометрически нелинейного деформирования, устойчивости и закритического поведения тонких неоднородных оболочек и модальный анализ оболочек с учетом наличия напряженного состояния на каждом шаге нагружения. Выполнен анализ частот и форм собственных колебаний тонкой ребристой панели, шарнирно опертой по контуру и нагруженной равномерным давлением.

Анотація (англ):

The article is devoted to a further analysis of the natural vibrations of inhomogeneous shells under the action of static loads. The method of investigation is based on a unified methodology that combines the problems of static stability and the vibrations of elastic shells. The problems of natural vibrations take into account the presence of a prestressed state of the shell structure from the action of static loads. The presence of a static load significantly affects the spectrum of the natural frequencies of the shell. This approach allows us to determine the critical load by the dynamic criterion. The method of investigating of inhomogeneous shells is based on the uniform methodological positions of the 3-d geometrically nonlinear theory of thermoelasticity and the finite-element method in the form of the moment finite-element scheme. So, a thin shell is considered by this method as a three-dimensional body which is modeled throughout the thickness by one isoparametric solid finite element with multilinear shape functions. Two nonclassical hypotheses are used to describe the stress–strain state of a thin inhomogeneous shell. The kinematic hypothesis of deformed straight line in the thickness direction: though stretched or shortened during deformation, a straight segment along the thickness remains straight. This segment is not necessarily normal to the mid-surface of the shell. The displacements are assumed distributed linearly along the thickness, which is conventional in the theory of thin shells. The static hypothesis compressive assumes that the stresses in the fibers are constant throughout the thickness of the shell. Modal analysis of a shallow ribbed panel demonstrates the effectiveness of the developed method. The natural frequencies and mode shapes are determined at each increment of static loading.

Література:

References:

1.        Bazhenov V. A., Krivenko O. P., Solovei N. A. Nonlinear Deformation and Buckling of Elastic Shells with Inhomogeneous Structure [in Ukrainian] – ZAT «Vipol», (Kyiv), 2010. – 316 p.2.        Bazhenov V. A., Krivenko O.P., Solovei N. A. Nonlinear Deformation and Buckling of Elastic Shells with Inhomogeneous Structure: Models, Methods, Algorithms, Poorly Studied and New Problems [in Russian]. – Book House "LIBRIKOM" (Moscow), 2013. – 336 p3.        Bazhenov V.A., Solovei N.A., Krivenko O.P. Modeling of Nonlinear Deformation and Buckling of Elastic Inhomogeneous Shells // Strength of Materials and Theory of Structures: Scientific-and-technical collected articles – Kyiv: KNUBS. – Issue 92, pp. 121-147 (2014), [in Ukrainian].4.        Bazhenov V.A., Krivenko O.P. Finite element modelling of processes of nonlinear deformation and buckling of elastic inhomogeneities thin-walled structures at action of thermomechanical loadings / Proceedings of the International Youth scientific conference "Strength, Creep and Destruction of Building and Engineering Materials and Structures" dedicated to the 55th anniversary of the RUDN (Master Classes of Famous Specialists) Moscow, November 18-21, 2014 - P. 55-64.5.        Bazhenov V.A., Krivenko O.P., Legostaev А.D. Stability and natural vibrations of inhomogeneous shells taking into account the stress state // Strength of Materials and Theory of Structures: Scientific-and-technical collected articles – Kyiv: KNUBS, 2015 – Issue 95. – Pp. 96–113, [in Ukrainian].6.        Krivenko O.P., Legostayev A.D., Grechukh N.A. Analysis of natural vibrations of shells with inhomogeneous structure using reduced finite element models // Strength of Materials and Theory of Structures: Scientific-and-technical collected articles – Kyiv: KNUBS, 2017. – Issue 98, Pp. 72-88, [in Ukrainian].7.        Krivenko O.P. Effect of Heating on the Stability and Natural Vibrations of a Spherical Panel with the Changing Combined Fixation of the Boundary // Strength of Materials and Theory of Structures: Scientific-and-technical collected articles – Kyiv: KNUBS, 2015. – Issue 96. – Pp. 48-65, [in Ukrainian].8.        Krivenko O.P. Effect of Preliminary Heating and Combined Fixation of the Boundary on the Stability and Natural Vibrations of Panels under Action of Pressure // Strength of Materials and Theory of Structures: Scientific-and-technical collected articles – Kyiv: KNUBS, 2016. – Issue 97. – P. 107-120 [in Ukrainian].9.        Golovanov A.I., Tyuleneva O.N., Shigabutdinov A.F. Finite Element Method in Static and Dynamics of Thin-Walled Structures [in Russian]. – FIZMATLIT (Moscow), 2006. – 392 p.10.     Karpov V.V. Strength and buckling of reinforced shells of rotation. In 2 parts. Part 1. Models and algorithms for investigating the strength and stability of reinforced shells of revolution [in Russian]. – FIZMATLIT (Moscow), 2010. – 288 p.; Part 2. Computational experiment with static mechanical action [in Russian]. – FIZMATLIT (Moscow), 2011. – 248 p.11.     Gavrilenko G.D., Matsner V. I., Kutenkova O.A. Free vibrations of ribbed cylindrical shells with local axisymmetric deflections // International Applied Mechanics,  2008. – Vol. 44. – Issue 9. – Рp. 1006–1014.12.     Zarutskii V.A., Lugovoi P.Z., Meish V.F. Dynamic problems for and stress–strain state of inhomogeneous shell structures under stationary and nonstationary loads // International Applied Mechanics, 2009. – Vol 45, № 3. – Pp. 245-271.13.     Reddy J.N. Theory and Analysis of Elastic Plates and Shells, Second Edition - CRC Press, 2006. - 568 p.14.     Amabili M. Nonlinear vibrations and stability of shells and plates. – Cambridge: Cambridge University Press, 2008. – 374 p.15.     Kirichok I.F. “Effect of initial temperature stresses on natural vibrations of orthotropic cylindrical shells” // Thermal stresses in structural elements, (1970) – Vol. 9. – Pp. 281-290 [in Russian].16.     Flachok V.M., Shvets R.N. “Effect of non-uniform heating on natural vibrations of anisotropic cylindrical shells” // Thermal stresses in structural elements, (1981) – Vol. 9. – Pp. 48-53 [in Russian].17.     Sakharov A.S., Kislookii V.N., Kirichevskii V.V., [et al.] Finite-Element Method in Solid Mechanics [in Russian], Vyshcha Shkola (Kyiv), (1982). – 480 p.18.     Solovei N.A., A modified three-dimensional finite element for modeling thin inhomogeneous shells // Strength of Materials and Theory of Structures: Scientific-and-technical collected articles – Kyiv: KNUBS, 2006. – Issue 80, pp. 96–113, [in Ukrainian].19.     Kiselev A.P., Gureeva N.A., Kiseleva R.Z. Calculation of a multilayer shell with the use of a spatial finite element // Izvestiya Volgograd State Technical University (2010). Vol. 4. – No. 4 [in Russian].20.     Liao C.-L. & Reddy J. N. Analysis of anisotropic stiffened, composite laminates using a continuum-based shell element // Comput. Struct., 34, No. 6, pp. 805–815 (1989).21.     Zienkiewicz O.C., The Finite-Element Method in Engineering Science, McGraw-Hill, New York (1971).22.     Bischoff M., Ramm E., Irslinger J. Models and finite elements for thin-walled structures // Encyclopedia of Computational Mechanics Second Edition. (2018) – С. 1-86.23.     Bathe K.-J., Wilson E.L., Numerical methods in finite element analysis, – Prentice-Hall, Englewood Cliffs, N.J., 1976. – 528 p.24.     Bathe K.-J. The subspace iteration method – Revisited // Computers & Structures, 2013, 126: 177-183 pp.25.     Vol’mir A.S., Nonlinear dynamics of plates and shells. [in Russian] – Nauka (Moscow), 1972. – 432 p.