Аннотації
19.06.2019
Досліджено напружено – деформований стан шару з циліндричною порожниною, коли на межах шару та на межі порожнини задані переміщення. Розв’язок просторової задачі теорії пружності отримано узагальненим методом Фур’є стосовно системи рівнянь Ламе в циліндричних координатах, пов’язаних із циліндром, та декартових координатах, пов’язаних із межами шару. Нескінченні системи лінійних алгебраїчних рівнянь, які отримані в результаті задоволення граничних умов, вирішено методом усічення. В результаті були отримані переміщення та напруження в різних точках пружного тіла. Проведено аналіз напружено – деформованого стану тіла при різних відстанях від циліндричної порожнини до меж шару.
Исследовано напряженно - деформированное состояние слоя с цилиндрической полостью, когда на границах слоя и на границе полости заданы перемещения. Решение пространственной задачи теории упругости получено обобщенным методом Фурье относительно системы уравнений Ламе в цилиндрических координатах, связанных с цилиндром, и декартовых координатах, связанных с границами слоя. Бесконечные системы линейных алгебраических уравнений, полученные в результате удовлетворения граничных условий, решено методом усечения. В результате были получены перемещения и напряжения в различных точках упругого тела. Проведен анализ напряженно - деформированного состояния тела при различных расстояниях от цилиндрической полости до границ слоя.
The stress - strain state of a layer with a cylindrical cavity was investigated, when displacements are set at the boundaries of the layer and at the boundary of the cavity. On the cavity and on the boundaries of the layer, displacements are given. The solution of the spatial problem of the theory of elasticity is obtained by generalized Fourier method in relation to the system of Lamex equations in cylindrical coordinates connected with the cylinder, and Cartesian coordinates associated with the boundaries of the layer. Infinite systems of linear algebraic equations obtained as a result of satisfaction of boundary conditions, solved by the truncation method. As a result, movements and strains were obtained at different points of the elastic body. Numerical studies of the algebraic system of equations give grounds to assert that its solution can be found with any degree of accuracy by the method of reduction, which is proved by the high accuracy of the implementation of boundary conditions. A numerical analysis of the stress - strain state of the body at various distances from the cylindrical cavity to the boundaries of the layer is carried out. The greatest normal stresses occur on the surface of the cylindrical cavity and on the isthmus between the surface of the cylindrical cavity and the boundaries of the layer. As the boundary surfaces approach each other, the stresses increase. The greatest tangential stresses arise on the surface of the cylindrical cavity at φ = 5π / 16, φ = 11π / 16, φ = 21π / 16 and φ = 27π / 16, and with the approximation of the boundary surfaces to each other the stress increases. The greatest tangential stresses arise on the surface of the cylindrical cavity along the z axis at φ = 0 and at φ = . When the boundaries of the layer approximation the cylindrical cavity decreases. The given analysis and algorithm of calculation can be used in the design of constructions, in the calculation schemes of which there is a layer with a cylindrical cavity and specified on the boundary surfaces by displacements.
1. Гузь А.Н., Кубенко В.Д., Черевко М.А. Дифракция упругих волн. –Київ: Наук. Думка. – 1978. – С. 307.2. Гринченко В.Т., Мелешко В. В. Гармонические колебания и волны в упругих телах. – Київ: Наук. Думка. – 1981. – 284 с.3. Zhao M., van Dalen K.N., Barbosa J.M., Metrikine A.V. Semi-analytical Solution for the Dynamic Response of a Cylindrical Structure Embedded in a Homogeneous Half-Space // International Symposium on Environmental Vibration and Transportation Geodynamics Environmental Vibrations and Transportation Geodynamics. – 2017. – P. 369 – 388.4. Coskun I., Enginb H., Ozmutlu A. Dynamic stress and displacement in an elastic half-space with a cylindrical cavity // Shock and Vibration. – 2011. – P. 827–838.5. Волчков В.В., Вуколов Д.С., Сторожев В.И. Дифракция волн сдвига на внутренних туннельных цилиндрических неоднородностях в виде полости и включения в упругом слое со свободными гранями// Механика твердого тела. – 2016. – Вып. 46. – С. 119 – 133.6. Проценко В.С., Николаев А.Г. Пространственная задача Кирша // Математические методы анализа динамических систем. – 1982. – Вып. 6. – С. 3 – 11.7. Гринченко В.Т., Улитко А.Ф. Пространственные задачи теории упругости и пластичности. Равновесие упругих тел канонической формы. Київ: Наук.думка. – 1985. – 280 с.8. Гузь А.Н., Космодамианский А.С., Шевченко В.П. и др. Механика композитов. Том 7. Концентрация напряжений. Київ: Наук. думка. – 1998. – С. 114 – 137.9. Ковалев Ю.Д., Стрельникова Е.А., Кушнир Д.В., Шрамко Ю.В. Установившиеся колебания слоя, ослабленного двумя отверстиями, с торцами, покрытыми диафрагмой (симметричный случай) // Проблеми машинобудування. – 2017. – Т. 20, № 4. – С. 37 – 44.10. Bobyleva T. Approximate Method of Calculating Stresses in Layered Array // Procedia Engineering. – 2016. – Vol.153. – P.103 – 106. https://doi.org/10.1016/j.proeng.2016.08.08711. Meleshko V.V., Tokovyy Yu.V. Equilibrium of an elastic finite cylinder under axisymmetric discontinuous normal loadings // J.Eng. Math. – 2013. V. 78. – P.143 – 166. doi: https://doi.org/10.1007/s10665-011-9524-y 12. Khoroshun L.P. Mathematical models and method of the mechanics of stochastic composites // International Applied Mechanics. – 2000. V.36, №10. – P. 1284 – 1316. doi: https://doi.org/10.1023/a:1009482032355 13. Дашко О.Г. Трансверсально-изотропный слой с круговой цилиндрической полостью при заданной расщепляющей силе // Збірник наукових праць Дніпродзержинського державного технічного університету. Технічні науки. – 2015. – Вип. 1. – С. 231 – 235.14. Николаев А.Г., Проценко В.С. Обобщенный метод Фурье в пространственных задачах теории упругости. – Харьков: Нац. аэрокосм. университет им. Н.Е. Жуковского «ХАИ», 2011. – 344 с.15. Мірошніков В.Ю. Друга основна задача теорії пружності у півпросторі з декількома паралельними круговими циліндричними порожнинами // Открытые информационные и компьютерные интегрированные технологии. – 2018. – №79. – С. 88 – 99.16. Проценко В. С., Украинец Н. А. Применение обобщенного метода Фурье к решению первой основной задачи теории упругости в полупространстве с цилиндрической полостью // Вісник Запорізького національного університету. 2015. Вып. 2. С. 193–202.17. Николаев А.Г., Орлов Е.М. Решение первой осесимметричной термоупругой краевой задачи для трансверсально-изотропного полупространства со сфероидальной полостью // Проблеми обчислювальної механіки і міцності конструкцій. – 2012. – Вип.20. – С. 253-259.18. Miroshnikov V.Yu. First basic elasticity theory problem in a half-space with several parallel round cylindrical cavities // Journal of Mechanical Engineering. – 2018. – Vol. 21, № 2. – P. 12 – 18.19. Protsenko V., Miroshnikov V. Investigating a problem from the theory of elasticity for a half-space with cylindrical cavities for which boundary conditions of contact type are assigned // Eastern-European Journal of Enterprise Technologies. – 2018. – Vol 4, № 7 (94). – P. 43 – 50.
1. Guz' A.N., Kubenko V.D., Cherevko M.A. Difraktsiya uprugikh voln (Diffraction of elastic waves). – Kiev: Nauk. Dumka. – 1978. – P.307. (In Russian).2. Grinchenko V.T., Meleshko V. V. Garmonicheskiye kolebaniya i volny v uprugikh telakh (Harmonic vibrations and waves in elastic bodies). – Kiev: Nauk. Dumka. – 1981. – 284 s. (In Russian).3. Zhao M., van Dalen K. N. , Barbosa J. M. , Metrikine A. V. Semi-analytical Solution for the Dynamic Response of a Cylindrical Structure Embedded in a Homogeneous Half-Space // International Symposium on Environmental Vibration and Transportation Geodynamics Environmental Vibrations and Transportation Geodynamics. – 2017. – P. 369 – 388.4. Coskun I., Enginb H., Ozmutlu A. Dynamic stress and displacement in an elastic half-space with a cylindrical cavity // Shock and Vibration. – 2011. – P. 827–838.5. Volchkov V.V., Vukolov D.S., Storogev V.I. Difraktsiya voln sdviga na vnutrennikh tunnel'nykh tsilindricheskikh neodnorodnostyakh v vide polosti i vklyucheniya v uprugom sloye so svobodnymi granyami (Diffraction of shear waves by internal tunneling cylindrical non-homogeneities in the form of a cavity and inclusion in an elastic layer with free faces) // Solid mechanics. – 2016. – Vol. 46. – P. 119 – 133. (In Russian).6. Protsenko V.S., Nikolaev A.G. Prostranstvennaya zadacha Kirsha (Kirsch spatial problem) // Mathematical methods for analyzing dynamic systems. – 1982. – Vol. 6. – P. 3 – 11. (In Russian).7. Grinchenko V.T., Ulitko A.F. Prostranstvennyye zadachi teorii uprugosti i plastichnosti. Ravnovesiye uprugikh tel kanonicheskoy formy (Spatial problems of the theory of elasticity and plasticity. Equilibrium of elastic bodies of canonical form). ‑ Kiev: Nauk. Dumka. – 1985. – 280 p. (In Russian).8. Guz’ A.N., Kosmodamianskiy A.S., Shevchenko V.P. and others. Mekhanika kompozitov (Mechanics of composites). Vol 7. Concentration of stresses. ‑ Kiev: Nauk. Dumka. – 1998. – P. 114 – 137. (In Russian).9. Kovalev Yu. D., Strelnikova E. A., Kushnir D. V., Shramko Yu. V. Ustanovivshiyesya kolebaniya sloya, oslablennogo dvumya otverstiyami, s tortsami, pokrytymi diafragmoy (simmetrichnyy sluchay) (Steady oscillations of the layer weakened by two holes, with the ends covered with a diaphragm (symmetric case)) // Journal of Mechanical Engineering. – 2017. – Т. 20, № 4. – P. 37 – 44. (In Russian).10. Bobyleva T. Approximate Method of Calculating Stresses in Layered Array // Procedia Engineering. – 2016. – Vol.153. – P.103 – 106. https://doi.org/10.1016/j.proeng.2016.08.08711. Meleshko V. V., Tokovyy Yu. V. Equilibrium of an elastic finite cylinder under axisymmetric discontinuous normal loadings // J.Eng. Math. – 2013. V. 78. – P.143 – 166. doi: https://doi.org/10.1007/s10665-011-9524-y 12. Khoroshun L. P. Mathematical models and method of the mechanics of stochastic composites // International Applied Mechanics. – 2000. V.36, №10. – P. 1284 – 1316. doi: https://doi.org/10.1023/a:1009482032355 13. Dashko O.G. Transversal'no-izotropnyy sloy s krugovoy tsilindricheskoy polost'yu pri zadannoy rasshcheplyayushchey sile (Transversely isotropic layer with a circular cylindrical cavity for a given splitting force) // Zbirnyk naukovykh pratsʹ Dniprodzerzhynsʹkoho derzhavnoho tekhnichnoho universytetu. Tekhnichni nauky. – 2015. – Vol. 1. – P. 231 – 235. (In Russian).14. Nikolaev A.G., Protsenko V.S. Obobshchennyy metod Fur'ye v prostranstvennykh zadachakh teorii uprugosti (Generalized Fourier method in spatial problems of the theory of elasticity). – Kharkov: National Aerospace University "KhAI", 2011. – 344 с. (In Russian).15. Miroshnikov V.Yu. Druha osnovna zadacha teoriyi pruzhnosti u pivprostori z dekilʹkoma paralelʹnymy kruhovymy tsylindrychnymy porozhnynamy (The second main problem of the theory of elasticity in a half-space with several parallel circular cylindrical cavities) // Otkrytyye informatsionnyye i komp'yuternyye integrirovannyye tekhnologii. – 2018. – №79. – P. 88 – 99. (In Ukrainian).16. Protsenko V.S., Ukrainec N.A. Primeneniye obobshchennogo metoda Fur'ye k resheniyu pervoy osnovnoy zadachi teorii uprugosti v poluprostranstve s tsilindricheskoy polost'yu (Application of the generalized Fourier method to the solution of the first main problem of the theory of elasticity in a half-space with a cylindrical cavity) // Visnyk Zaporizkoho natsionalnoho universytetu. 2015. Vol. 2. P. 193–202. (In Russian).17. Nikolaev A.G., Orlov E.M. Resheniye pervoy osesimmetrichnoy termouprugoy krayevoy zadachi dlya transversal'no-izotropnogo poluprostranstva so sferoidal'noy polost'yu (Solution of the first axisymmetric thermoelastic boundary value problem for a transversely isotropic half-space with a spheroidal cavity) // Problemy obchyslyuvalnoyi mekhaniky i mitsnosti konstruktsiy. – 2012. – Vol.20. – P. 253-259. (In Russian).18. Miroshnikov V.Yu. First basic elasticity theory problem in a half-space with several parallel round cylindrical cavities // Journal of Mechanical Engineering. – 2018. – Vol. 21, № 2. – P. 12 – 18.19. Protsenko V., Miroshnikov V. Investigating a problem from the theory of elasticity for a half-space with cylindrical cavities for which boundary conditions of contact type are assigned // Eastern-European Journal of Enterprise Technologies. – 2018. – Vol 4, № 7 (94). – P. 43 – 50.