Аннотації
04.06.2020
У статті викладені основи методу розв’язання статичних задач геометрично нелінійного деформування, втрати стійкості та коливань тонких термопружних неоднорідних оболонок зі складною формою середньої поверхні, з геометричними особливостями за товщиною, в умовах дії складного термомеханічного навантаження. Метод заснований на геометрично нелінійних співвідношеннях тривимірної термопружності, скінченно-елементному формулюванні задачі в приростах і використанні моментної схеми скінченних елементів. За цим методом тонка оболонка розглядається як тривимірне тіло, яке моделюється по товщині одним універсальним просторовим скінченним елементом (СЕ). Універсальний СЕ розроблений на основі ізопараметричного просторового СЕ з полілінійними функціями форми для координат і переміщень. Можливості модифікованого елемента розширені за рахунок введення додаткових змінних параметрів. Методика модального аналізу неоднорідних оболонок базується на підході, за яким на кожному кроці термосилового навантаження враховуються накопичені на попередніх кроках напруження. Розроблена методика дозволяє комплексно досліджувати геометрично нелінійне деформування та стійкість тонких і середньої товщини пружних оболонок неоднорідної структури та вивчати малі коливання оболонки відносно відлікового деформованого стану, що викликаний довільним статичним навантаженням, з урахуванням великих переміщень і переднапруженого стану. Виконано аналіз стійкості та коливань сферичної панелі з отвором. Досліджено вплив послідовної дії теплових і силових навантажень на частоти і форми коливань оболонки.
В статье изложены основы метода решения статических задач геометрически нелинейного деформирования, потери устойчивости и колебаний тонких термоупругих неоднородных оболочек со сложной формой срединной поверхности, с геометрическими особенностями по толщине, в условиях действия сложной термомеханической нагрузки. Метод основан на геометрически нелинейных соотношениях трехмерной термоупругости, конечно-элементной формулировке задачи в приращениях и использовании моментной схемы конечных элементов. Тонкая переменной толщины оболочка сложной геометрической формы рассматривается согласно методу как трехмерное тело, которое моделируется по толщине одним универсальным пространственным конечным элементом (КЭ). Универсальный КЭ разработан на основе изопараметрического пространственного КЭ с полилинейными функциями формы для координат и перемещений. Возможности модифицированного элемента расширены за счет введения дополнительных переменных параметров. Методика модального анализа оболочки базируется на подходе, когда на каждом шаге термосилового нагружения учитываются напряжения, накопленные на предыдущих шагах. Разработанная методика позволяет комплексно исследовать геометрически нелинейное деформирование и устойчивость тонких и средней толщины упругих оболочек неоднородной структуры, а также изучать малые колебания оболочек относительно отсчетного деформированного состояния, вызванного произвольной статической нагрузкой, с учетом больших перемещений и преднапряженного состояния. Выполнен анализ устойчивости и колебаний сферической панели с отверстием. Исследовано влияние последовательного воздействия тепловых и силовых нагрузок на частоты и формы колебаний оболочки.
The paper outlines the fundamentals of the method of solving static problems of geometrically nonlinear deformation, buckling, and vibrations of thin thermoelastic inhomogeneous shells with complex-shaped midsurface, geometrical features throughout the thickness, under complex thermomechanical loading. The technique is based on the geometrically nonlinear equations of three-dimensional thermoelasticity, the finite element formulation of the problem in increments, and the use of the moment finite-element scheme. A thin shell is considered by this method as a three-dimensional body. We approximate a shell by one spatial universal finite element (FE) throughout the thickness. The universal FE is based on an isoparametric spatial FE with polylinear shape functions for coordinates and displacements. The universal element has additional variable parameters introduced to expand its capabilities. The method of modal analysis of the shell is based on an approach that at each current stage of thermomechanical loading takes into account the stresses accumulated at the previous stages. The developed algorithm allows one to study geometric nonlinear deformation and buckling of elastic shells of an inhomogeneous structure with a thin and medium thickness, as well as to study small vibrations of the shells relative to the reference deformed state caused by static loading, taking into account large displacements and a prestressed state. An analysis of the stability and vibration of the spherical panel with the hole is carried out. The effect on the frequencies and mode shapes of the shell of the sequential action of thermal and mechanical loads is investigated.
1. Bazhenov V.A., Krivenko O.P., Solovey M.O. Neliniyne deformuvannya ta stiykist pruzhnih obolonok neodnoridnoyi strukturi. – K.: ZAT «Vipol», 2010. – 316 s. [Nonlinear deformation and stability of elastic shells with inhomogenous structure. Kyiv: CJSC “VIPOL”, 2010. – 316s.] (ukr).2. Bazhenov V.A., Krivenko O.P., Solovey N.A. Nelineynoe deformirovanie i ustoychivost uprugih obolochek neodnorodnoy strukturyi: Modeli, metodyi, algoritmyi, maloizuchennyie i novyie zadachi. – M.: Knizhnyiy dom «LIBROKOM», 2013. – 336 s. [Nonlinear deformation and stability of elastic shells of inhomogeneous structure: Models, methods, algorithms, poorly-studied and new problems. – Moscow: publishing house "LIBROKOM", 2013. – 336 s.] (rus)3. Bazhenov V., Krivenko O. Buckling and Natural Vibrations of Thin Elastic Inhomogeneous Shells. – LAP LAMBERT Academic Publishing. Saarbruken, Deutscland, 2018. – 97 p.4. Solovey N.A., Krivenko O.P., Malygina O.A. Konechnoelementnye modeli issledovaniya nelinejnogo deformirovaniya obolochek stupenchato-peremennoj tolshiny s otverstiyami, kanalami i vyemkami // Inzhenerno-stroitelnyj zhurnal (S.-Peterburg), 2015. – № 1. – S. 56-69. [Finite element models for the analysis of nonlinear deformation of shells stepwise-variable thickness with holes, channels and cavities // Magazine of Civil Engineering, 2015. – No. 1. – Pp. 56-69.] (rus).5. Gavrilenko G.D. Stability and load-bearing capacity of smooth and ribbed shells with local dents // International Applied Mechanics, 2004 – Vol. 40, No. 9. – Pp. 970-993.6. Gavrilenko G.D., Matsner V.I., Kutenkova O.A. Dent and thickness effects on the critical loads of stiffened shells // Strength of Materials, 2011. – Vol. 43, No. 3. – Pp. 347-351.7. Karpov V.V. Prochnost i ustojchivost podkreplennyh obolochek vrasheniya. V 2-h ch.: Ch.1. Modeli i algoritmy issledovaniya prochnosti i ustojchivosti podkreplennyh obolochek vrasheniya. FIZMATLIT, 2010. – 288 s.; Ch.2. Vychislitelnyj eksperiment pri staticheskom mehanicheskom vozdejstvii. – M.: FIZMATLIT, 2011. – 248 s. [Strength and buckling of reinforced shells of rotation. In 2 parts. Part 1. Models and algorithms for investigating the strength and stability of reinforced shells of revolution. – FIZMATLIT (Moscow), 2010. – 288 p.; Part 2. Computational experiment with static mechanical action. – FIZMATLIT (Moscow), 2011. – 248 p.] (rus).8. Ghanbari Ghazijahani T., Showkati H. Locally imperfect conical shells under uniform external pressure // Strength of Materials (2013). No. 3. – Pp. 369-377.9. Guz'A.N., Chernyshenko I.S., Chekhov Val.N., et al. Investigations in the theory of thin shells with openings (review) (1979). – Vol.15, No. 4. – Pp. 1015–1043.10. Gavrilenko G.D., Macner V.I. Analiticheskij metod opredeleniya verhnih i nizhnih kriticheskih nagruzok dlya uprugih podkreplennyh obolochek. – Dnepropetrovsk: TOV «Barviks», 2007. – 187 s. [An analytical method of determining the upper and lower critical loads for elastic reinforced shells] (rus).11. Zarutskii V.A., Lugovoi P.Z., Meish V.F. Dynamic problems for and stress–strain state of inhomogeneous shell structures under stationary and nonstationary loads // International Applied Mechanics, 2009. – Vol 45, No 3. – Pp. 245-271.12. Chapelle D., Bathe K.J. The finite element analysis of shells – Fundamentals. Series: Computational fluid and solid mechanics. – Berlin; Heidelberg: Springer, 2011. – 410 p.13. Farbod Alijani, Marco Amabili. Non-linear vibrations of shells: A literature review from 2003 to 2013. International Journal of Non-Linear Mechanics, vol. 58, pp. 233-257 (2014).14. Reddy J.N. Theory and Analysis of Elastic Plates and Shells, Second Edition - CRC Press, 2006. – 568 p.15. Sumirin S., Nuroji N., and Besar S. Snap-Through Buckling Problem of Spherical Shell Structure // International Journal of Science and Engineering, 2015. – Vol. 8(1), – 54-59.16. Metody rascheta obolochek. T. 4. Teoriya obolochek peremennoj zhestkosti / Grigorenko Ya.M., Vasilenko A.E. - K.: Nauk. dumka, 1981. - 544 s. [Methods for calculating shells. T. 4. The theory of shells of variable stiffness] (rus).17. Metod konechnyh elementov v mehanike tverdyh tel / A.S.Saharov, V.N.Kislookij, V.V.Kirichevskij i dr. - K.: Visha shk. Golovnoe izd-vo, 1982. - 480 s. [The finite element method in mechanics] (rus).18. Golovanov A.I., Tyuleneva O.N., Shigabutdinov A.F. Metod konechnyh elementov v statike i dinamike tonkostennyh konstrukcij. – M.: FIZMATLIT, 2006. - 392 s. [The finite element method in the statics and dynamics of thin-walled structures] (rus).19. Valishvili N.V. Metody rascheta obolochek vrasheniya na ECVM. - M.: Mashinostroenie, 1976. - 278 s. [Methods for calculating shells of rotation on electronic digital computers] (rus.).20. Oden J.T. Finite Elements of Nonlinear Continua, McGraw-Hill, New York (1971).21. Zienkiewicz O.C. The Finite-Element Method in Engineering Science, McGraw-Hill, New York (1971).22. David Bushnell and William D. Bushnell (http://shellbuckling.com).23. Krivenko O.P. Effect of static loads on the natural vibrations of ribbed shells // Opir materialiv i teoriya sporud: nauk.-teh. zbirn. – K.: KNUBA, 2018. – Vip. 101. – S. 38-44 [Strength of Materials and Theory of Structures: Scientific-and-technical collected].24. Amiro I.Ya., Zaruckij V.A., Polyakov P.S. Rebristye cilindricheskie obolochki. - K.: Naukova dumka, 1973. - 248 s. [Ribbed cylindrical shells] (rus).25. Gavrilenko G.D., Macner V.I. Analiticheskij metod opredeleniya verhnih i nizhnih kriticheskih nagruzok dlya uprugih podkreplennyh obolochek. – Dnepropetrovsk: TOV «Barviks», 2007. – 187 s. [An analytical method for determining the upper and lower critical loads for elastic reinforced shells] (rus).26. Bazhenov V.A., Krivenko O.P., Legostayev A.D. Stijkist i vlasni kolivannya neodnoridnih obolonok z urahuvannyam napruzhenogo stanu // Opir materialiv i teoriya sporud: nauk.-teh. zbirn. – K.: KNUBA, 2015. – Vip. 95. – C. 96-113. [Stability and natural vibrations of inhomogeneous shells, taking into account the stress state] (ukr).27. Vol’mir A.S. Nelinejnaya dinamika plastinok i obolochek. – M.: Nauka, 1972. – 432 s. [Nonlinear dynamics of plates and shells] (rus).28. Bazhenov V.A., Solovei N.A., Krivenko O.P., Mishenko O.A. Modelirovanie nelinejnogo deformirovaniya i poteri ustojchivosti uprugih neodnorodnyh obolochek // Stroitelnaya mehanika inzhenernyh konstrukcij i sooruzhenij (MOSKVA), 2014. – № 5. – S. 14–33. [Modeling of nonlinear deformation and buckling of elastic inhomogeneous shells] (rus). 29. LIRA 9.4 Rukovodstvo polzovatelya. Osnovy. Uchebnoe posobie. / Strelec-Streleckij E.B., Bogovis V.E., Genzerskij Yu.V., Gerajmovich Yu.D. i dr. – K.: izd-vo «Fakt», 2008. – 164 s. [LIRA 9.4 User Guide. Basics. Textbook.] (rus).