Аннотації
27.11.2020
У статті на базі сучасних чисельних реалізацій метода скінченних елементів представлені теоретичні основи аналізу процесів деформування конструкцій машин і споруд при їх контактній взаємодії із пружнопластичним нелінійним грунтовим середовищем в рамках тривимірної просторової задачі з урахуванням попереднього напруженого стану та історії навантаження. Створена методика побудови розрахункових моделей сумісного деформування і взаємного впливу жорстких конструкцій і суттєво пластичного зовнішнього середовища, розроблені нові спеціальні неоднорідні скінченні елементи НМСЕ загального вигляду із змінними геометричними і фізико-механічними параметрами та довільними граничними умовами для апроксимації масивів малозв’язних зміцнюваних грунтів.
В статье на базе современных численных реализаций метода конечных элементов представлены теоретические основы анализа процессов деформирования конструкций машин и сооружений при их контактном взаимодействии с упругопластической нелинейной грунтовой средой в рамках трехмерной пространственной задачи с учетом предыдущего напряженного состояния и истории нагрузки. Создана методика построения расчетных моделей совместного деформирования и взаимного влияния жестких конструкций и существенно пластической внешней среды, разработаны новые специальные неоднородные конечные элементы НМСЕ общего вида с переменными геометрическими и физико-механическими параметрами и произвольными граничными условиями для аппроксимации массивов малосвязных упрочняющихся грунтов.
The use of numerical methods in the calculation of machines and structures, taking into account their interaction with the elastic-plastic medium is largely determined by the complexity or even impossibility of analytical calculation due to the complexity of structural schemes, heterogeneity of material features, uneven soil layers, implementation of step-by-step work execution technologies and so on. Compatible calculations of structures and nonlinear basis, which are described by modern mechanical and soil models in one problem is a significant technical problem. And neither the existing “problem-oriented” software packages, nor the “universal” ones - do not fully contain such models. The tasks solution is possible only within the framework of numerical methods, the most common of which is the finite element method (FEM). The construction of the calculated finite element model raises many complex questions that require additional detailed study. In addition, the compliance with the state building norms and regulations is an important factor for further practical use. The combination of the latest achievements in the field of structural mechanics and soil mechanics is a promising direction for the development of effective approaches for building discrete models of spatial systems “structure-nonlinear base” for solving applied problems. On the basis of modern numerical implementations of the finite element method the article presents the theoretical foundations of the analysis of deformation processes of machines and structures in their contact interaction with the elastic-plastic nonlinear soil medium within the three-dimensional spatial problem taking into account the previous stress state and load history. The methodology of construction of computational models of joint deformation and mutual influence of rigid structures and essentially plastic external medium is developed, new special heterogeneous finite elements of SAFEM of general form with variable geometrical and physical-mechanical parameters and arbitrary boundary conditions for approximation of arrays of hardly connected reinforced soils are developed.
1. Alexanderov A.S. Modification of the criterion of Kulon-Mora for raschet constructive roads on the resistance of the sdvyh. Part 1. Enter the third parameter of the motherhood / A.S. Alexanderov, G.V. Dolgikh // Mezhdunarodnyi nauchno-issledovatelskii zhurnal. – 2016. – №. 6-2 (48).2. Bazhenov V.A. Formulation and calculation ratios of the problem of destruction mechanics for spatial bodies under the action of dynamic loads within the semi-analytical method of finite elements / V.A. Bazhenov, І.І Солодей, М.О Вабіщевич, О.О Чепурна // Opіr materіalіv і teorіia sporud. – 2017. – №. 99. – P. 58-70.3. Berezhnoy D.V. Choosing a soil model for numerical simulation of the influence of deep excavation on the existing building. / D.V. Berezhnoy, M.K. Sagdatullin, L.U. Sultanov // Bulletin of Kazan Technological University. – 2013. – № 9. – P. 250-255.4. Bhutto A.H. Mohr-Coulomb and hardening soil model comparison of the settlement of an embankment dam / A.H. Bhutto et al. //Engineering, Technology & Applied Science Research. – 2019. – Т. 9. – №. 5. – P. 4654-4658.5. Bishop A.U. Strength parameters when undisturbed and crumpled soil samples shift / A.U. Bishop // Opredeliaiushchie zakony mehaniki gruntov. - M.: Mir, 1975. P. 7-75.6. Blokh V.I. Theory of resilience / V.I. Blokh - Harkov: Izd-vo Hark. un-ta.- 1964. –483 p.7. Boiko I.P. The method of numerical modeling of the development of limit-state zones in the ground of the bases under the ICE / I.P. Boiko, A.E. Delnik, A.S. Saharov – K.: Inzh.-stroit. in-t., 1983. - 46 p.8. Bower T.A., Jefferson A.D., Cleall P.J. A reformulated hardening soil model / T.A. Bower, A.D. Jefferson, P.J. Cleall //Proceedings of the Institution of Civil Engineers-Engineering and Computational Mechanics. – 2020. – Т. 173. – №. 1. – P. 11-29.9. Bugrov A.K. On solving the mixed problem of the theory of elasticity and the theory of plasticity of primes / A.K. Bugrov // Osnovaniia, fundamenty i mehanika gruntov. – 1974. - №36. - P. 20-23.10. Horodetskii A.S. Kompiuternye modeli konstruktsii (Computer models of constructions) / A. S. Horodetskii, I. D. Evzerov. – Kiev: Fakt, 2005. – 344 p.11. Kudasheva M.I. Comparison of the Mor-Coulomb model and the hardening ground model in the Plaxis software complex / M.I. Kudasheva, C.V. Kaloshina // Stroitelstvo i arhitektura. Opyt i sovremennye tekhnologii. – 2017. – Resource Access Mode: http://sbornikstf.pstu.ru/council/?n=912. Melnikov R.V. Calibrating the Hardening Soil parameters based on laboratory tests in the program Soiltest / R.V. Melnikov, R.K. Sagitova. // Akademicheskii vestneyk UralNIIproekt RAASN. – 2016. – № 3. – P. 79-83.13. Mirnyi A.Iu. Areas of use of modern mechanical models of soils / A.Iu. Mirnyi, A.Z. Ter-Martirosian. // Geotekhnika. – 2017. – № 1. – P. 20-26.14. Nicolaevskii V.N. Determining equations of plastic deformation of the loose environment / V.N. Nicolaevskii // PMM. – 1971. - т. 35, № 6. - P. 1070-1082.15. Nicolaevskii V.N. Dilatansia and the laws of irreversible deformation of soils / V.N. Nicolaevskii // Osnovaniia, fundamenty i mehanika gruntov. – 1979. - № 5. - P. 29-32.16. Nicolaevskii V.N. Dynamics of elastic-plastic dilating environments / V.N. Nicolaevskii, N.M. Syrnikov, G.M. Shchefter // V kn.: Uspehi mehaniki deformiruemykh sred. - M.: Nauka, 1975. - P. 397-413.17. Perelmuter A.V. Raschetnye modeli sooruzhenij i vozmozhnost ikh analiza (Design models of structures and the possibility of their analysis) / A.V. Perelmuter, V.I. Slivker. – Moscow: SKAD SOFT, 2011. 736 p.18. Petrov, D.N., Demenkov, P.A., Potemkin, D.A. Numerical modeling of the stress state in the lining of columnar stations without side platforms. / D.N. Petrov, P.A Demenkov., D.A. Potemkin // Notes of the Mining Institute. – 2010. – 185. – P. 166-170.19. Piskunov S. O..Features of the use of the torque scheme of finite elements (ISSE) in linear calculations of shells and plates. / S.O. Piskunov, І.І. Solodei, Iu.V.Maksimiuk, & A.D. Solodenko // Opіr materіalіv ta teorіia sporud, (91), P. 62-78.20. Pramthawee P. Integration of creep into a modified hardening soil model for time-dependent analysis of a high rockfill dam / P.Pramthawee, P.Jongpradist, R.Sukkarak // Computers and Geotechnics. – 2017. – Т. 91. – P. 104-116.21. Riabkov S.V. Experience of the Plaxis 3D software complex by the tunnel construction design department / C.V. Riabkov, H.A. Solovev. // Metro i tonneli. – 2016. – №9. – P. 53–55.22. Rosko K. The value of deformations in soil mechanics / K. Rosko // V kn.: Mehanika. - M.: Mir, 1971. - № 3 (127). - P. 91-145.23. Saharov A.S. End-of-life method in solid mechanics / A.S. Saharov, V.N. Kislookii, V.V. Kirichevskii i dr. - Kiev: Vishcha shkola, 1982.- 479p.24. Schweiger H.F. Examples of successful numerical modelling of complex geotechnical problems / H.F. Schweiger et al. // Innovative Infrastructure Solutions. – 2019. – Т. 4. – №. 1. – P. 2.25. Shirokov V. N. Model of sandy soil / V.N. Shirokov // V kn.: Sovremennye problemy nelineinoi mehaniki gruntov, Cheliabinsk, ChPI. – 1985. - P. 27-28.26. Sidorov N.I., Spidin V.P. Modern methods of determining the characteristics of mechanical properties of soils / N.I. Sidorov, V.P. Spidin. – L.: Stroiizdat, 1972. – 136 p.27. Skocsylas K. Analiza statecznosci skaroy nawodnionej / K. Skocsylas, E. Stilger-Szyd Lo // Prace Naukowe Insc Geotech. Politech. Wroclawskij. - 1987. - K 52. - Р. 317-322.28. Solodei I. Implementation of the linear elastic structure half-space in the Plaxis in the study of settlements / I. Solodei I., Gh. Zatyliuk // Proceedings of Odessa Polytechnic University. – 2019. – № 1 (57). – P. 22-28.29. Solodei I. Mohr-coulomb model with corrected parameters in the study of base settlements / I. Solodei, Gh. Zatyliuk // The Austrian Journal of Technical and Natural Sciences, Premier Publishing s.r.o. Vienna. 2020.– 9-10 – P.36-39.30. Stroganov A.S. Analysis of flat plastic deformation of the ground / A.S. Stroganov // Inzhenernyi zhernal. – 1965. - tom 5, vyp. 4. - P. 734-742.31. Xiang X. Numerical implementation of a modified Mohr–Coulomb model and its application in slope stability analysis / X. Xiang, D. Zi-Hang //Journal of Modern Transportation. – 2017. – Т. 25. – №. 1. – P. 40-51.Zienkiewicz O.C. Non-linear seismic response and liquefaction / O.C. Zienkiewicz, C.T. Chang, E. Hinton // Intern. J. Numer. and Anal. Meth. Geomech. - 1978. - Vol. 2. – N4. - P. 381-404.
1. Alexanderov A.S. Modification of the criterion of Kulon-Mora for raschet constructive roads on the resistance of the sdvyh. Part 1. Enter the third parameter of the motherhood / A.S. Alexanderov, G.V. Dolgikh // Mezhdunarodnyi nauchno-issledovatelskii zhurnal. – 2016. – №. 6-2 (48).2. Bazhenov V.A. Formulation and calculation ratios of the problem of destruction mechanics for spatial bodies under the action of dynamic loads within the semi-analytical method of finite elements / V.A. Bazhenov, І.І Солодей, М.О Вабіщевич, О.О Чепурна // Opіr materіalіv і teorіia sporud. – 2017. – №. 99. – P. 58-70.3. Berezhnoy D.V. Choosing a soil model for numerical simulation of the influence of deep excavation on the existing building. / D.V. Berezhnoy, M.K. Sagdatullin, L.U. Sultanov // Bulletin of Kazan Technological University. – 2013. – № 9. – P. 250-255.4. Bhutto A.H. Mohr-Coulomb and hardening soil model comparison of the settlement of an embankment dam / A.H. Bhutto et al. //Engineering, Technology & Applied Science Research. – 2019. – Т. 9. – №. 5. – P. 4654-4658.5. Bishop A.U. Strength parameters when undisturbed and crumpled soil samples shift / A.U. Bishop // Opredeliaiushchie zakony mehaniki gruntov. - M.: Mir, 1975. P. 7-75.6. Blokh V.I. Theory of resilience / V.I. Blokh - Harkov: Izd-vo Hark. un-ta.- 1964. –483 p.7. Boiko I.P. The method of numerical modeling of the development of limit-state zones in the ground of the bases under the ICE / I.P. Boiko, A.E. Delnik, A.S. Saharov – K.: Inzh.-stroit. in-t., 1983. - 46 p.8. Bower T.A., Jefferson A.D., Cleall P.J. A reformulated hardening soil model / T.A. Bower, A.D. Jefferson, P.J. Cleall //Proceedings of the Institution of Civil Engineers-Engineering and Computational Mechanics. – 2020. – Т. 173. – №. 1. – P. 11-29.9. Bugrov A.K. On solving the mixed problem of the theory of elasticity and the theory of plasticity of primes / A.K. Bugrov // Osnovaniia, fundamenty i mehanika gruntov. – 1974. - №36. - P. 20-23.10. Horodetskii A.S. Kompiuternye modeli konstruktsii (Computer models of constructions) / A. S. Horodetskii, I. D. Evzerov. – Kiev: Fakt, 2005. – 344 p.11. Kudasheva M.I. Comparison of the Mor-Coulomb model and the hardening ground model in the Plaxis software complex / M.I. Kudasheva, C.V. Kaloshina // Stroitelstvo i arhitektura. Opyt i sovremennye tekhnologii. – 2017. – Resource Access Mode: http://sbornikstf.pstu.ru/council/?n=912. Melnikov R.V. Calibrating the Hardening Soil parameters based on laboratory tests in the program Soiltest / R.V. Melnikov, R.K. Sagitova. // Akademicheskii vestneyk UralNIIproekt RAASN. – 2016. – № 3. – P. 79-83.13. Mirnyi A.Iu. Areas of use of modern mechanical models of soils / A.Iu. Mirnyi, A.Z. Ter-Martirosian. // Geotekhnika. – 2017. – № 1. – P. 20-26.14. Nicolaevskii V.N. Determining equations of plastic deformation of the loose environment / V.N. Nicolaevskii // PMM. – 1971. - т. 35, № 6. - P. 1070-1082.15. Nicolaevskii V.N. Dilatansia and the laws of irreversible deformation of soils / V.N. Nicolaevskii // Osnovaniia, fundamenty i mehanika gruntov. – 1979. - № 5. - P. 29-32.16. Nicolaevskii V.N. Dynamics of elastic-plastic dilating environments / V.N. Nicolaevskii, N.M. Syrnikov, G.M. Shchefter // V kn.: Uspehi mehaniki deformiruemykh sred. - M.: Nauka, 1975. - P. 397-413.17. Perelmuter A.V. Raschetnye modeli sooruzhenij i vozmozhnost ikh analiza (Design models of structures and the possibility of their analysis) / A.V. Perelmuter, V.I. Slivker. – Moscow: SKAD SOFT, 2011. 736 p.18. Petrov, D.N., Demenkov, P.A., Potemkin, D.A. Numerical modeling of the stress state in the lining of columnar stations without side platforms. / D.N. Petrov, P.A Demenkov., D.A. Potemkin // Notes of the Mining Institute. – 2010. – 185. – P. 166-170.19. Piskunov S. O..Features of the use of the torque scheme of finite elements (ISSE) in linear calculations of shells and plates. / S.O. Piskunov, І.І. Solodei, Iu.V.Maksimiuk, & A.D. Solodenko // Opіr materіalіv ta teorіia sporud, (91), P. 62-78.20. Pramthawee P. Integration of creep into a modified hardening soil model for time-dependent analysis of a high rockfill dam / P.Pramthawee, P.Jongpradist, R.Sukkarak // Computers and Geotechnics. – 2017. – Т. 91. – P. 104-116.21. Riabkov S.V. Experience of the Plaxis 3D software complex by the tunnel construction design department / C.V. Riabkov, H.A. Solovev. // Metro i tonneli. – 2016. – №9. – P. 53–55.22. Rosko K. The value of deformations in soil mechanics / K. Rosko // V kn.: Mehanika. - M.: Mir, 1971. - № 3 (127). - P. 91-145.23. Saharov A.S. End-of-life method in solid mechanics / A.S. Saharov, V.N. Kislookii, V.V. Kirichevskii i dr. - Kiev: Vishcha shkola, 1982.- 479p.24. Schweiger H.F. Examples of successful numerical modelling of complex geotechnical problems / H.F. Schweiger et al. // Innovative Infrastructure Solutions. – 2019. – Т. 4. – №. 1. – P. 2.25. Shirokov V. N. Model of sandy soil / V.N. Shirokov // V kn.: Sovremennye problemy nelineinoi mehaniki gruntov, Cheliabinsk, ChPI. – 1985. - P. 27-28.26. Sidorov N.I., Spidin V.P. Modern methods of determining the characteristics of mechanical properties of soils / N.I. Sidorov, V.P. Spidin. – L.: Stroiizdat, 1972. – 136 p.27. Skocsylas K. Analiza statecznosci skaroy nawodnionej / K. Skocsylas, E. Stilger-Szyd Lo // Prace Naukowe Insc Geotech. Politech. Wroclawskij. - 1987. - K 52. - Р. 317-322.28. Solodei I. Implementation of the linear elastic structure half-space in the Plaxis in the study of settlements / I. Solodei I., Gh. Zatyliuk // Proceedings of Odessa Polytechnic University. – 2019. – № 1 (57). – P. 22-28.29. Solodei I. Mohr-coulomb model with corrected parameters in the study of base settlements / I. Solodei, Gh. Zatyliuk // The Austrian Journal of Technical and Natural Sciences, Premier Publishing s.r.o. Vienna. 2020.– 9-10 – P.36-39.30. Stroganov A.S. Analysis of flat plastic deformation of the ground / A.S. Stroganov // Inzhenernyi zhernal. – 1965. - tom 5, vyp. 4. - P. 734-742.31. Xiang X. Numerical implementation of a modified Mohr–Coulomb model and its application in slope stability analysis / X. Xiang, D. Zi-Hang //Journal of Modern Transportation. – 2017. – Т. 25. – №. 1. – P. 40-51.Zienkiewicz O.C. Non-linear seismic response and liquefaction / O.C. Zienkiewicz, C.T. Chang, E. Hinton // Intern. J. Numer. and Anal. Meth. Geomech. - 1978. - Vol. 2. – N4. - P. 381-404.