Аннотації
27.11.2020
У статті розглядається задача оптимізації розміру одинарного відгину, що підкріплює полички, в стержневих елементах конструкцій із холодногнутих профілів. Як критерій оптимальності використана лінійна згортка критерію мінімізації площі розрахункового перерізу відгину та критерію максимізації «ефективної» (редукованої) площі відгину, що визначає його понижену несучу здатність за рахунок втрати стійкості при згинальному випучуванні. Результати виконаних досліджень можуть слугувати рекомендаціями для компаній-виробників холодногнутих профілів, а також рекомендаціями для створення національного сортаменту ефективних холодногнутих профілів.
В статье рассматривается задача оптимизации размера одинарного отгиба, подкрепляющего полки, в стержневых элементах конструкций из холодногнутых профилей. В качестве критерия оптимальности использована линейная свертка критерия минимизации расчетной площади отгиба и критерия максимизации редуцированной площади отгиба, определяющей его пониженную (за счет потери устойчивости при изгибном выпучивании) несущую способность. Результаты выполненных исследований служат рекомендациями для компаний-изготовителей холодногнутых профилей, а также рекомендациями для создания национального сортамента эффективных холодногнутых профилей, что будет способствовать более широкому внедрению исследуемого класса конструкций в практику строительства.
Parametric optimization problem for single edge fold size in cold-formed structural members subjected to central compression has been considered by the paper. Determination the load-bearing capacity of the cold-formed structural members has been performed using the geometrical properties calculated based on the constructed “effective” (reduced) cross-sections taking into account local buckling effects in the section as well as distortional buckling effects. Single edge fold size in cold-formed C-profile has been considered as design variable. Linear convolution of criteria, namely minimization criterion of design area of stiffener cross-section and maximization criterion effective area of stiffener cross-section which defines it reduced load-bearing capacity due to flexural buckling has been used as optimization criterion. The parametric optimization problem has been solved using the method of objective function gradient projection onto the active constraints surface with simultaneous correction of the constraints violations. In order to realize the formulated optimization problem, software OptCAD intended to solve parametric optimization problems for steel structural systems has been used. Optimization results of the single edge folds for the cold-formed С-profiles manufactured by «Blachy Pruszyński» company, «BF FACTORY» company as well as «STEELCO» company have been presented by the paper. The results of the performed investigation can be used as recommendations for companies-manufacturers of the cold-formed profiles, as well as a guide for creation the national assortment base of the effective cold-formed profiles promoting wider implementation of cold-formed steel structures in building practice. Key words: load-bearing capacity, cold-formed profile, optimization problem, single edge fold, stiffener, distortional buckling, linear convolution of criteria.
1. DSTU-N B EN 1993-1-3:2012 EuroCode 3. Design of steel structures. Part 1-3: General rules – Supplementary rules for cold-formed members and sheeting (EN 1993-1-3:2006, IDT). – Kyiv, Minregionbud of Ukraine, 2012. (ukr)2. DSTU-N B EN 1993-1-5:2012 EuroCode 3: Design of steel structures. Part 1-5: General rules – Plated structural elements (EN 1993-1-5:2005, IDT). – Kyiv, Minregionbud of Ukraine, 2012. (ukr)3. Guljaev V. I., Bazhenov V. A., Koshkin V. L. Metodyi optimizatsii v stroitelnoy mehanike (Optimisation methods in structural mechanic). – Kyiv, 1988. – 192 p. (rus)4. Peleshko I., Yurchenko V. An optimum structural computer-aided design using update gradient method // Proceedings of the 8th International Conference “Modern Building Materials, Structures and Techniques” (Lithuania, Vilnius, May 19-21, 2004), Faculty of Civil Engineering, Vilnius Gediminas Technical University. – p. 860-865.5. Peleshko I. D., Yurchenko V. V., Beliaev N. A. Computer-aided design and optimization of steel structural systems // Zeszyty naukowe Politechniki Rzeszowskiej “Budownictwo i inżynieria środowiska”. – No. 52(264). – 2009. – p. 145-154.6. Perelmuter А. V., Yurchenko V. V. Doslidzhennia oblasti nesuchoi zdatnosti tonkostinnykh sterzhnevykh elementiv iz kholodnohnutykh profiliv (Load-bearing capacity region analysis of thin-walled structural members from cold-formed profiles) // Science and construction. – № 3 (21), 2019. – p. 42 – 48. https://doi.org/10.33644/scienceandconstruction.v21i3.110 (ukr)7. Permyakov V. O., Yurchenko V. V., Peleshko I. D. An optimum structural computer-aided design using hybrid genetic algorithm // Proceeding of the International Conference “Progress in Steel, Composite and Aluminium Structures” / Gizejowski, Kozlowski, Sleczka & Ziolko (eds.) / Taylor & Francis Group, London, 2006. – p. 819-826.8. Assortment ranges of the cold-formed profiles for light gauge steel structures of the Ukrainian manufacturers. UCSC-014-16, 2016. 32 p. (ukr)9. Yurchenko V. Searching for shear forces flows in arbitrary cross-sections of thin-walled bars: numerical algorithm and software implementation // Strength of Materials and Theory of Structures: Scientific-and-technical collected articles. – Kyiv: KNUBA, 2019. – Issue 103. – p. 82 – 111. https://doi.org/10.32347/2410-2547.2019.103.82-111.
1. DSTU-N B EN 1993-1-3:2012 EuroCode 3. Design of steel structures. Part 1-3: General rules – Supplementary rules for cold-formed members and sheeting (EN 1993-1-3:2006, IDT). – Kyiv, Minregionbud of Ukraine, 2012. (ukr)2. DSTU-N B EN 1993-1-5:2012 EuroCode 3: Design of steel structures. Part 1-5: General rules – Plated structural elements (EN 1993-1-5:2005, IDT). – Kyiv, Minregionbud of Ukraine, 2012. (ukr)3. Guljaev V. I., Bazhenov V. A., Koshkin V. L. Metodyi optimizatsii v stroitelnoy mehanike (Optimisation methods in structural mechanic). – Kyiv, 1988. – 192 p. (rus)4. Peleshko I., Yurchenko V. An optimum structural computer-aided design using update gradient method // Proceedings of the 8th International Conference “Modern Building Materials, Structures and Techniques” (Lithuania, Vilnius, May 19-21, 2004), Faculty of Civil Engineering, Vilnius Gediminas Technical University. – p. 860-865.5. Peleshko I. D., Yurchenko V. V., Beliaev N. A. Computer-aided design and optimization of steel structural systems // Zeszyty naukowe Politechniki Rzeszowskiej “Budownictwo i inżynieria środowiska”. – No. 52(264). – 2009. – p. 145-154.6. Perelmuter А. V., Yurchenko V. V. Doslidzhennia oblasti nesuchoi zdatnosti tonkostinnykh sterzhnevykh elementiv iz kholodnohnutykh profiliv (Load-bearing capacity region analysis of thin-walled structural members from cold-formed profiles) // Science and construction. – № 3 (21), 2019. – p. 42 – 48. https://doi.org/10.33644/scienceandconstruction.v21i3.110 (ukr)7. Permyakov V. O., Yurchenko V. V., Peleshko I. D. An optimum structural computer-aided design using hybrid genetic algorithm // Proceeding of the International Conference “Progress in Steel, Composite and Aluminium Structures” / Gizejowski, Kozlowski, Sleczka & Ziolko (eds.) / Taylor & Francis Group, London, 2006. – p. 819-826.8. Assortment ranges of the cold-formed profiles for light gauge steel structures of the Ukrainian manufacturers. UCSC-014-16, 2016. 32 p. (ukr)9. Yurchenko V. Searching for shear forces flows in arbitrary cross-sections of thin-walled bars: numerical algorithm and software implementation // Strength of Materials and Theory of Structures: Scientific-and-technical collected articles. – Kyiv: KNUBA, 2019. – Issue 103. – p. 82 – 111. https://doi.org/10.32347/2410-2547.2019.103.82-111.