Boundary element approaches to the problem of 2-D non-stationary elastic vibrations

Заголовок (російською): 
Граничноэлементные подходи к задаче про нестационарные упругие колебания в двумерной постановке
Заголовок (англійською): 
Boundary element approaches to the problem of 2-D non-stationary elastic vibrations
Автор(и): 
Vorona Yu.V.
Kozak A.A.
Автор(и) (англ): 
Vorona Yu.V.
Kozak A.A.
Ключові слова (укр): 
гранично-часові інтегральні рівняння, частотна область, функції Ганкеля, ряд Маклорена, імпульсне навантаження
Ключові слова (рус): 
гранично-временные интегральные уравнения, частотная область, функции Ганкеля, ряд Маклорена, импульсное нагружение
Ключові слова (англ): 
time-dependent boundary integral equations, frequency domain, Hankel functions, Maclaurin series, impulse loading
Анотація (укр): 
Для аналізу нестаціонарних коливань пружних масивів використовуються два граничноелементні підходи. Перший пов'язаний з переходом в частотну область, а другий реалізує процедуру інтегрування за часом. Проведено порівняння методів при вирішенні задачі про імпульсне навантаження пружного середовища з двома циліндричними порожнинами.
Анотація (рус): 
Для анализа нестационарных колебаний упругих массивов используются два граничноэлементных подхода. Первый из них связан с переходом в частотную область, а второй реализует процедуру интегрирования по времени. Проведено сравнение методов при решении задачи об импульсном нагружении упругой среды с двумя цилиндрическими полостями.
Анотація (англ): 
Two boundary element approaches are used to solve the problem on non-stationary vibrations of elastic solids. The first approach is based on the transition to the frequency domain by means of a Fourier series expansion. The second approach is associated with the direct solution of a system of time-dependent boundary integral equations, with a piecewise constant approximation of the dependence of the unknowns on time. In both cases, a collocation scheme is used to algebraize the integral equations, and the difficulties associated with the calculation of singular integrals are overcome by replacing the kernels with the initial segment of the Maclaurin series. After such a replacement, the kernels take the form of a sum, the first term of which is the corresponding fundamental solution of the statics problem while other terms are regular. Since integration of static kernels is not difficult the problem of calculating the diagonal coefficients of the SLAE turns out to be solved. The developed techniques are compared in the process of dynamics analysis solving of elastic media with two cylindrical cavities. The boundary of one of the cavities is subjected to a radial impulse load, which varies according to the parabolic law. Both approaches have shown the similar effectiveness and qualitative consistency.
Публікатор: 
Київський національний університет будівництва і архітектури
Назва журналу, номер, рік випуску (укр): 
Опір матеріалів і теорія споруд, 2020, номер 104
Назва журналу, номер, рік випуску (рус): 
Сопротивление материалов и теория сооружений, 2020, номер 104
Назва журналу, номер, рік випуску (англ): 
Strength of Materials and Theory of Structures, 2020, number 104
Мова статті: 
English
Формат документа: 
application/pdf
Документ: 
Дата публікації: 
04 Июнь 2020
Номер збірника: 
Університет автора: 
Kyiv National University of Construction and Architecture, 31 Povitroflotsky ave., Kyiv, 03680 2LLC Research and Production Company SCAD Soft, 3a Osvity str., Kyiv, 03037
References: 
  1. Brebbia C.A., Telles J.C.F., Wrobel L.C. Boundary Elements Techniques. Berlin: Springer-Verlag, 1984. rfield R. Boundary Elements Methods in Engineering Science. – London: McGraw-Hill, 1981. – 464 p.
  2. Banerjee P.K., Butterfield R. Boundary Elements Methods in Engineering Science. – London: McGraw-Hill, 1981. – 452 p.
  3. Vorona Yu.V,  Kozak A.A., Chernenko O.S. Гранично-елементна методика дослідження динамічного НДС пружних масивів [Boundary elements technique for the analysis of 2D elastic solids dynamics (in Ukrainian)] // Opir materialiv i teoriya sporud (Strength of Materials and Theory of Structures). – 2014. – Issue 93. – P. 27–36.
  4. Dominguez J. Boundary Element in Dynamics. – Southampton, Boston: Computational Mechanics Publications, 1993. – 454 p.