Алгоритм зменшення обчислювальних витрат в задачах розрахунку несиметрично навантажених оболонок обертання
Заголовок (російською):
. Алгоритм снижения вычислительных затрат в задачах расчета несимметрично нагруженных оболочек вращения
Заголовок (англійською):
Algorithm for reducing computational costs in problems of calculation of asymmetrically loaded shells of rotation
Автор(и):
Дзюба А.П.
Сафронова І.А.
Левитіна Л.Д.
Автор(и) (англ):
Dzyuba A. P.
Safronova I. A.
Levitina L. D.
Ключові слова (укр):
оболонки обертання, змінна жорсткість, несиметричне навантаження, прогнозування коефіцієнтів в методі Фур'є, зниження обчислювальних витрат
Ключові слова (рус):
оболочки вращения, переменная жесткость, несимметричное нагружение, прогнозирования коэффициентов в методе Фурье; снижение вычислительных затрат
Ключові слова (англ):
rotation shells, variable stiffness, asymmetric loading, coefficient prediction in the Fourier method, reduction in computing costs
Анотація (укр):
Задача розрахунку оболонок обертання змінної уздовж меридіана жорсткості при несиметричному навантаженні зводиться до сукупності систем одновимірних крайових задач щодо амплітуд розкладання шуканих функцій в тригонометричні ряди Фур'є.
Пропонується методика зменшення кількості одновимірних крайових задач, необхідних для досягнення заданої точності визначення напружено-деформованого стану оболонок обертання зі змінною уздовж меридіана товщиною стінки при несиметричному навантаженні. Ідея запропонованого підходу полягає в застосуванні періодичного екстраполювання (прогнозування) значень коефіцієнтів розкладання шуканих функцій з використанням результатів обчислень попередніх коефіцієнтів відповідного тригонометричного ряду, замінюючи їх, таким чином, деякими прогноз-значеннями, обчисленими за простими формулами.
Для вирішення цієї задачі пропонується сумісне використання екстраполяційних залежностей Ейткена – Стеффенса і в формі складової приросту в методі Адамса, який є досить ефективним при розв’язанні задачі Коші для систем звичайних диференціальних рівнянь і базується на екстраполяційних залежностях Лагранжа і Ньютона.
Перевірка достовірності запропонованого підходу здійснювалася за результатами системного числового експерименту шляхом прогнозування значень коефіцієнтів розкладень в ряди Фур'є відомих функцій однієї змінної.
Підхід виявляється досить ефективним в задачах розрахунку несиметрично навантажених оболонок обертання зі змінною вздовж меридіана товщиною, коли коефіцієнти розкладання шуканих функцій в ряди Фур'є є функціями поздовжньої координати і обчислюються в результаті розв’язання відповідної крайової задачі. В цьому випадку підхід дозволяє вирішувати системи диференціальних рівнянь щодо амплітуд розкладання в тригонометричні ряди тільки для окремих «опорних» гармонік, а амплітуди для кожної третьої гармоніки можуть бути обчислені в результаті інтерполяції їх значень для всіх вузлових точок інтегрування відповідної крайової задачі. Це дозволяє істотно скоротити обчислювальні витрати на отримання розв’язку в цілому.
Як приклад наведено результати розрахунку напружено-деформованого стану сталевої кільцевої пластини при несиметричному поперечному навантаженні.
Анотація (рус):
Задача расчета оболочек вращения переменной вдоль меридиана жесткости при несимметричном нагружении сводится к совокупности систем одномерных краевых задач относительно амплитуд разложения искомых функций в тригонометрические ряды Фурье. Предложен подход, основанный на прогнозировании значений переменных вдоль меридиана коэффициентов разложений для сокращения необходимого количества решений таких одномерных задач. Это позволяет снизить вычислительные затраты на поиск решения. В качестве примера приведены результаты расчёта напряженно-деформированного состояния стальной кольцевой пластины при несимметричном поперечном нагружении.
Анотація (англ):
The problem of calculating the shells of rotation of a variable along the meridian of rigidity under asymmetric loading is reduced o a set of systems of one-dimensional boundary value problems with respect to the amplitudes of decomposition of the required functions into trigonometric Fourier series.
A method for reducing the number of one-dimensional boundary value problems required to achieve a given accuracy in determining the stress-strain state of the shells of rotation with a variable along the meridian wall thickness under asymmetric load. The idea of the proposed approach is to apply periodic extrapolation (prediction) of the values of the decomposition coefficients of the required functions using the results of calculations of previous coefficients of the corresponding trigonometric series, thus replacing them with some prediction values calculated by simple formulas.
To solve this problem, we propose the joint use of Aitken-Steffens extrapolation dependences and Adams method in the form of incremental component, which is quite effective in solving the Cauchy problem for systems of ordinary differential equations and is based on Lagrange and Newton extrapolation dependences.
The validity of the proposed approach was verified b the results of a systematic numerical experiment by predicting the values of the expansion coefficients in the Fourier series of known functions of one variable.
The approach is quite effective in the calculation of asymmetrically loaded shells of rotation with variable along the meridian thickness, when the coefficients of decomposition of the required functions into Fourier series are functions of the longitudina lcoordinate and are calculated by solving the corresponding boundary value problem. In this case, the approach allows solving solutions of differential equations for the amplitudes of decompositionin to trigonometric series only for individual "reference" harmonics, and the amplitudes for every third harmonic can be calculated by interpolating their values for all node integration points of the corresponding boundary value problem. This significantly reduces the computational cost of obtaining the solution as a whole.
As an example, the results of the calculation of the stress-strain state of a steel annular plate under asymmetric transverse loading are given.
Публікатор:
Київський національний університет будівництва і архітектури
Назва журналу, номер, рік випуску (укр):
Опір матеріалів і теорія споруд, 2020, номер 105
Назва журналу, номер, рік випуску (рус):
Сопротивление материалов и теория сооружений, 2020, номер 105
Назва журналу, номер, рік випуску (англ):
Strength of Materials and Theory of Structures, 2020, number 105
Мова статті:
English
Формат документа:
application/pdf
Документ:
Дата публікації:
27 Ноябрь 2020
Номер збірника:
Університет автора:
Oles Honchar Dnipro National University, 72, Gagarina Av, Dnipro, Ukraine, 49010
Литература:
1. Biderman V. L. Mechanics of thin-walled structures / V. L. Biderman. – Mashinostroenie. –Мosscow, 1977. – 488 p. (in Russian).2. Grigorenko Ya. M. Methods for calculating shells. Theory of shells of variable rigidity. Vol. 4 / Ya. M. Grigorenko, A. T. Vasilenko. – Naukova Dunka, Kiev, 1981. – 544 p. (in Russian).3. Grigorenko A. Ya. Stress-strain state of shallow rectangular shells of variable thickness under various boundary conditions / A. Ya Grigorenko, N. P Yaremchenko., C. N. Yaremchenko // Bul. of NAS Ukraine. – Vol. 6. – 2016. – P. 31-37 (in Ukrainian).4. Dzyuba A. P. Calculation algorithm on the basis of a discrete-continuous approach for cylindrical shell of variable rigidity in circular direction / A. P. Dzyuba, I. A. Safronova, L. D. Levitina // Problems of computational mechanics and strength of structures, Collection of scientific articles. –Vol. 30. – 2019. – P. 53-67 (in Ukrainian).5. Myachenkov V. I. Calculation of composite shell structures on a computer: Reference / V. I. Myachenkov I. V. Grigoryev. – Mashinostroenie. – Moscow, 1981. – 212 p. (in Russian).6. Sineva N. F. Calculation of a cylindrical shell of variable stiffness interacting with a nonlinear elastic base / N. F. Sineva, F. S. Selivanov, D. V. Nikityuk // Bull. Saratov State Techn. Un-ty. Ser.: Construction and architecture. – Vol. 4(60). – Iss 2. – 2011. – P. 15-21 (in Russian).7. Models and algorithms for optimization of elements of nonuniform shell structures, in N. V. Pоlyakov (Eds.) / A. P. Dzyuba, V. N. Sirenko, A. A. Dzyuba and I. A. Safronova // Actual problems of mechanics: Monograph, Lira, Dnipro, 2018. – P. 225-243 (in Ukrainian).8. Ovchinnikov I. G. Thin-walled structures under conditions of corrosion wear: Calculation and optimization / I. G. Ovchinnikov, Yu. M. Pochtman. – DNU. – Dnepropetrovsk, 1995. – 190 p. (in Russian).9. Dashchenko A. F. ANSYS in the problems of mechanical engineering: monograph. second ed. / A. F. Dashchenko, D. V. Lazareva, N. G. Suryaninov. – BURUN and K0. – Kharkiv, 2011. – 504 p. (in Russian).10. Alyamovsky A. A. SolidWorks/COSMOSWorks. Finite Element Engineering Analysis. / A. A. Alyamovsky. – DMK Press. – Moscow, 2004. 432 p. (in Russian).11. Grigorenko Ya. M. Solving the problems of shell theory on a computer / Ya. M. Grigorenko, A. P. Mukoed. – High School. – Kiev, 1979. – 280 p. (in Russian).12. Mossakovsky V. I. Contact Interactions of Elements of Shell Structures / V. I. Mossakovsky, V. S. Hudramovich, E. M. Makeev. – Naukova Dunka. – Kiev, 1988. – 288 p. (in Russian).13. Emel’yanov I. G. Application of discrete Fourier series to the stress analysis of shell structures / I. G. Emel’yanov // Computational Continuum Mechanics. – Vol 8(3). – 2015. – P. 245-253. (in Russian).14. Hudramovich V. S. Contact interaction and optimization of locally loaded shell structures / V. S. Hudramovich, A. P. Dzyuba // Journal of mathematical Science - Springer Science + Business media. – 2009. – P. 231-245.15. Strength. Sustainability. Fluctuations: Handbook, vol.1. / (Eds.) I. A. Birger, Ya. G. Panovko. – Mashinostroenie. – Moscow, 1968. – 821 p. (in Russian).16. Tolstov G. P. Fourier Series / G. P. Tolstov. – Fizmatgiz. – Moscow, 1960. – 392 p. (in Russian).17. Godunov S. K. On the numerical solution of boundary value problems for systems of linear ordinary differential equations / S. K. Godunov // Advances in Mathematical Sciences. – Vol. 16. – Iss.3 (99). –1961. – P. 171-174 (in Russian).18. Bulakajev P. I. An algorithm for the prediction of search trajectory in nonlinear programming problems optimum design / P. I. Bulakajev, A. P. Dzjuba // Structural Optimization: Research Journal of Intern. Society of Struct. and Multidisciplinary Optimiz. – Springer – Verlag. –Vol. 13(2, 3). – 1997. –P. 199-202.19. Dzyuba A. P. An algorithm for reducing the computational cost of using the Fourier method in the problems of shell structural mechanics / A. P. Dzyuba, O. O. Bobilev, P. I. Bulakaev // Bull. of Dnepropetrovsk state university. Vol. 2(2). – 1999. – P. 47-57 (in Russian). 20. Shamansky V. E. Methods of numerical solution of boundary value problems on a computer / V. E. Shamansky. – Academia Science USSR. – Kiev. – Part. 1, 1963. – 196 p. – Part. 2, 1966. – 242 p. (in Russian).
References:
1. Biderman V. L. Mechanics of thin-walled structures / V. L. Biderman. – Mashinostroenie. –Мosscow, 1977. – 488 p. (in Russian).2. Grigorenko Ya. M. Methods for calculating shells. Theory of shells of variable rigidity. Vol. 4 / Ya. M. Grigorenko, A. T. Vasilenko. – Naukova Dunka, Kiev, 1981. – 544 p. (in Russian).3. Grigorenko A. Ya. Stress-strain state of shallow rectangular shells of variable thickness under various boundary conditions / A. Ya Grigorenko, N. P Yaremchenko., C. N. Yaremchenko // Bul. of NAS Ukraine. – Vol. 6. – 2016. – P. 31-37 (in Ukrainian).4. Dzyuba A. P. Calculation algorithm on the basis of a discrete-continuous approach for cylindrical shell of variable rigidity in circular direction / A. P. Dzyuba, I. A. Safronova, L. D. Levitina // Problems of computational mechanics and strength of structures, Collection of scientific articles. –Vol. 30. – 2019. – P. 53-67 (in Ukrainian).5. Myachenkov V. I. Calculation of composite shell structures on a computer: Reference / V. I. Myachenkov I. V. Grigoryev. – Mashinostroenie. – Moscow, 1981. – 212 p. (in Russian).6. Sineva N. F. Calculation of a cylindrical shell of variable stiffness interacting with a nonlinear elastic base / N. F. Sineva, F. S. Selivanov, D. V. Nikityuk // Bull. Saratov State Techn. Un-ty. Ser.: Construction and architecture. – Vol. 4(60). – Iss 2. – 2011. – P. 15-21 (in Russian).7. Models and algorithms for optimization of elements of nonuniform shell structures, in N. V. Pоlyakov (Eds.) / A. P. Dzyuba, V. N. Sirenko, A. A. Dzyuba and I. A. Safronova // Actual problems of mechanics: Monograph, Lira, Dnipro, 2018. – P. 225-243 (in Ukrainian).8. Ovchinnikov I. G. Thin-walled structures under conditions of corrosion wear: Calculation and optimization / I. G. Ovchinnikov, Yu. M. Pochtman. – DNU. – Dnepropetrovsk, 1995. – 190 p. (in Russian).9. Dashchenko A. F. ANSYS in the problems of mechanical engineering: monograph. second ed. / A. F. Dashchenko, D. V. Lazareva, N. G. Suryaninov. – BURUN and K0. – Kharkiv, 2011. – 504 p. (in Russian).10. Alyamovsky A. A. SolidWorks/COSMOSWorks. Finite Element Engineering Analysis. / A. A. Alyamovsky. – DMK Press. – Moscow, 2004. 432 p. (in Russian).11. Grigorenko Ya. M. Solving the problems of shell theory on a computer / Ya. M. Grigorenko, A. P. Mukoed. – High School. – Kiev, 1979. – 280 p. (in Russian).12. Mossakovsky V. I. Contact Interactions of Elements of Shell Structures / V. I. Mossakovsky, V. S. Hudramovich, E. M. Makeev. – Naukova Dunka. – Kiev, 1988. – 288 p. (in Russian).13. Emel’yanov I. G. Application of discrete Fourier series to the stress analysis of shell structures / I. G. Emel’yanov // Computational Continuum Mechanics. – Vol 8(3). – 2015. – P. 245-253. (in Russian).14. Hudramovich V. S. Contact interaction and optimization of locally loaded shell structures / V. S. Hudramovich, A. P. Dzyuba // Journal of mathematical Science - Springer Science + Business media. – 2009. – P. 231-245.15. Strength. Sustainability. Fluctuations: Handbook, vol.1. / (Eds.) I. A. Birger, Ya. G. Panovko. – Mashinostroenie. – Moscow, 1968. – 821 p. (in Russian).16. Tolstov G. P. Fourier Series / G. P. Tolstov. – Fizmatgiz. – Moscow, 1960. – 392 p. (in Russian).17. Godunov S. K. On the numerical solution of boundary value problems for systems of linear ordinary differential equations / S. K. Godunov // Advances in Mathematical Sciences. – Vol. 16. – Iss.3 (99). –1961. – P. 171-174 (in Russian).18. Bulakajev P. I. An algorithm for the prediction of search trajectory in nonlinear programming problems optimum design / P. I. Bulakajev, A. P. Dzjuba // Structural Optimization: Research Journal of Intern. Society of Struct. and Multidisciplinary Optimiz. – Springer – Verlag. –Vol. 13(2, 3). – 1997. –P. 199-202.19. Dzyuba A. P. An algorithm for reducing the computational cost of using the Fourier method in the problems of shell structural mechanics / A. P. Dzyuba, O. O. Bobilev, P. I. Bulakaev // Bull. of Dnepropetrovsk state university. Vol. 2(2). – 1999. – P. 47-57 (in Russian). 20. Shamansky V. E. Methods of numerical solution of boundary value problems on a computer / V. E. Shamansky. – Academia Science USSR. – Kiev. – Part. 1, 1963. – 196 p. – Part. 2, 1966. – 242 p. (in Russian).