Порівняння експериментально отриманих фізико механічних характеристик балок з масивної, клеєної та перехресно-клеєної деревини та теоретично розрахованих у програмному комплексі Dlubal RFEM 5
Заголовок (англійською):
Comparison of experimentally obtained and theoretically determined in the Dlubal RFEM 5 software physical and mechanical properties of massive, glued laminated and cross laminated timber beams /
Автор(и):
Білик С.І.
Бітюков Д.О.
Автор(и) (англ):
Bilyk S.I.
Bitiukov D.O.
Ключові слова (укр):
масивна деревина, клеєна деревина, перехресно клеєна деревина, композитний матеріал, модуль деформації, модуль зсуву, прогин, будівельні матеріали, механічна стійкість, скінченний елемент, коефіцієнт Пуассона, Dlubal RFEM 5
Ключові слова (англ):
massive timber, glued laminated timber, cross-laminated timber, composite material, deformation modulus, shear modulus, deflection, building materials, mechanical resistance, finite element, Poisson's ratio, Dlubal RFEM 5
Анотація (укр):
У статті представлено результати дослідження та верифікації експериментально отриманих фізико-механічних характеристик дерев’яних балок, виготовлених з масивної, клеєної та перехресно-клеєної деревини. Метою дослідження є порівняння реальних та теоретичних прогинів балок, визначених у програмному комплексі кінцево-елементного аналізу Dlubal RFEM 5. Попередньо були проведені експериментальні дослідження з визначення модифікованих модулів деформації для кожного типу деревини із врахуванням впливу модуля деформації зсуву.
Моделювання виконувалось у три етапи: із застосуванням стрижневих 1D кінцевих елементів, просторових тривимірних 3D кінцевих елементів та 3D-моделі CLT-балки з урахуванням орієнтації волокон ламелей. Для кожного типу деревини були визначені характеристики для відповідних моделей матеріалу: ізотропної лінійно-пружньої для 1D елементів та ортотропної лінійно-пружньої 3D моделі матеріалу для 3D елементів. Теоретично рознаховані прогини порівнювались із експериментальними значеннями, що дозволило оцінити точність кожної з моделей.
Результати показали високу точність моделювання для балок з масивної та клеєної деревини з похибкою до 2%. Для балок з CLT-деревини відзначено недооцінку теоретичних прогинів для моделей зі стрижневих та просторових кінцевих елементів та запас теоретичних прогинів для моделей із просторових кінцевих елементів з урахуванням орієнтації волокон ламелей.
Дослідження підтверджує доцільність використання як спрощених, так і більш детальних моделей при аналізі деформацій дерев’яних конструкцій. Для підвищення точності розрахунків рекомендовано подальше уточнення характеристик досліджуваних матеріалів, зокрема залежності між модулем деформації та модулем зсуву, а також врахування складних умов навантаження, типів опор та довготривалих впливів у майбутніх дослідженнях. Також доцільним є проведення додаткових експериментів для уточнення параметрів міцності й жорсткості, характерних для різних конфігурацій перехресно-клеєних балок.
Анотація (англ):
The article presents the results of research and verification of experimentally obtained physical and mechanical characteristics of beams made of massive, glued laminated (glulam) and cross-laminated timber (CLT). The purpose of the study is to compare the real and theoretical deflections of the beams, determined with the Dlubal RFEM 5 finite element analysis software. Previously, experimental studies were conducted to determine the modified deformation modulus (deformation modulus with consideration of influence of shear modulus) for each type of timber beams.
The modeling was performed in three stages: using 1D member finite elements, 3D Solid finite elements and a 3D Solid model of the CLT beam considering the orientation of the lamellae fibers in each layer. For each type of timber beam, characteristics were determined for the corresponding material models: isotropic linear-elastic material model for 1D finite elements and orthotropic linear-elastic 3D material model for 3D finite elements. Theoretically calculated deflections were compared with experimentally obtained values, which made it possible to evaluate the accuracy of each model.
The results showed high accuracy of modeling for massive and glulam timber beams with an error of up to 2%. For CLT beams, an underestimation of the theoretical deflections for models from 1D and 3D finite elements and an overestimation of theoretical deflections for models from 3D finite elements, taking into account the orientation of the fibers of the lamellae, was noted.
The research confirms the expediency of using both simplified and detailed models in the analysis of deformations of timber structures. To increase the accuracy of the calculations, it is recommended to further refine the characteristics of the studied materials, in particular, the dependence between the deformation modulus and the shear modulus, as well as considering complex loading conditions, types of supports, and long-term effects in future studies. It is also advisable to carry out additional experiments to clarify the parameters of strength and stiffness characteristic of various configurations of cross-glued beams.
Публікатор:
Київський національний університет будівництва і архітектури
Назва журналу, номер, рік випуску (укр):
Опір матеріалів і теорія споруд, 2025, номер 114
Назва журналу, номер, рік випуску (англ):
Strength of Materials and Theory of Structures, 2025, number 114
Мова статті:
English
Формат документа:
application/pdf
Документ:
Дата публікації:
04 Июнь 2025
Номер збірника:
Університет автора:
Київський національний університет будівництва і архітектури
References:
1. DBN V.2.6-161:2017 «Dereviani konstruktsii. Osnovni polozhennia» («Wooden structures. Substantive provisions») / kerivnyk rozrobky: Fursov V.V., vidpovidalnyi vykonavets: Mykhailovskyi D.V., Naichuk A.Ia. ta inshi // - Kyiv, «Ukrarkhbudinform». - 2017. – 125 s.2. P.G. Kossakowski. Influence of anisotropy on the energy release rate GI for highly orthotropic materials // Journal of theoretical and applied mechanics. - 2007, 45, 4, pp. 739-752.3. J. Bodig, J. R. Goodman. Prediction of elastic parameters for wood // Wood science. - 1973 vol. 5, no.4, pp. 249-2644. D. W. Green, J. E. Winandy, D. E. Kretschmann. Mechanical properties of wood // Wood handbook: wood as an engineering material. Madison, WI: USDA Forest Service, Forest Products Laboratory. General technical report FPL. – 1973. – GTR‑113: Pages 4.1-4.455. Otani, L.B., Pereira A.H.A., Segundinho P.G.A., Morales E. A. M. Determination of wood and byproducts elastic moduli using the Impulse Excitation Technique. // White paper: Technical-scientific informative ITC-05 / ATCP. - 20226. Komar M.A., Mykhailovskyi D.V. & Komar O.A. Engineering method of calculating laminated timber elements reinforced with composite tapes // Strength of Materials and Theory of Structures: Scientific and technical collected articles. – 2022. - № 109. – P. 239-262. doi: 10.32347/2410-2547.2022.109.239-262.7. Komar M.A., Mykhailovskyi D.V. Definition of the stress-strain state of a glued laminated timber beam reinforced with composite strips using experimental method // Strength of Materials and Theory of Structures: Scientific-and-technical collected articles. – K.: KNUBA. - 2024. - Issue 112. – P. 43-51. doi: 10.32347/2410-2547.2024.112.43-51.8. Polishchuk M. V. Napruzheno-deformovanyi stan zghynalnykh elementiv z kleienoi derevyny z kombinovanym armuvanniam (Stress-strain state of bending elements made of glued laminated timber with combined reinforcement): dys. dokt. filosofii. 192"Budivnytstvo ta tsyvilna inzheneriia" Rivne: NUVHP. – 2022. - 168s.9. Homon S. S., Homon P. S., Homon S. S., Puhach Yu. V. Shchodo neobkhidnosti vykorystannia deformatsiinoi modeli v rozrakhunku derevianykh konstruktsii (Regarding the need to use a deformation model in the calculation of wooden structures) // Resursoekonomni materialy, konstruktsii, budivli ta sporudy. - 2024. - 46, 175–191. https://doi.org/10.31713/budres.v0i46.2110. Mykhailovskyi D. V., Komar M. A. Analiz napruzheno-deformovanoho stanu balok z kleienoi derevyny, pidsylenykh kompozy-tnymy strichkamy (Analysis of the stress-strain state of glued laminated timber beams reinforced with composite strips) // Zbirnyk naukovykh prats. Haluzeve mashynobuduvannia, budivnytstvo. – 2021. - 2 (57) - S. 90 - 97.. DOI: 10.26906/znp.2021.57.2590.11. Mykhailovskyi, D. V., Komar M. A. Inzhenerna metodyka rozrakhunku elementiv z kleienoi derevyny, armovanoi kompozytnoiu armaturoiu (Engineering methodology for calculating elements made of glued laminated timber reinforced with composite reinforcement) // Budivelni konstruktsii, teoriia i praktyka KNUBA. - 2020. - №7. s.93-10012. Solovei M.O., Kryvenko O.P., Mishchenko O.O., Kalashnikov O.B. Vrakhuvannia kharakterystyk kompozytnoho materialu v skinchennoelementnii modeli (Taking into account the characteristics of the composite material in the finite element model) // Opir materialiv i teoriia sporud: nauk.-tekh. zbirnyk – K.: KNUBA, 2012. – Vyp. 89. – S. 172-180.13. Mykhailovskyi D.V. Method of calculation of panel buildings from cross-laminated timber // Strength of Materials and Theory of Structures: Scientific-and-technical collected articles. – K.: KNUBA, 2021. – Issue 107. – P. 75-88. – Англ. DOI: 10.32347/2410-2547.2021.107.75-8814. Online Manuals RFEM 5, 4.3 Materials [Electronic source] // www.dlubal.com - Access mode: https://www.dlubal.com/en/downloads-and-information/documents/online-man... (07.04.2025)15. Mykhailovskyi D.V. Modeling and calculation of panel buildings made of cross-laminated timber // Strength of Materials and Theory of Structures: Scientific-and-technical collected articles. – K.: KNUBA, 2023. – Issue 110. – P. 164-177. DOI: 10.32347/2410-2547.2023.110.164-17716. Dujic B., Strus K., Zarnic R., Ceccotti A. Prediction of dynamic response of a 7-storey massive timber building tested on a shaking table. Slovenia // World Connection on Timber Engineering. – 2007. - 8 p.17. Svortevik V.J., Engevik M. B., Kraniotis D. Use of cross laminated timber (CLT) in industrial buildings in Nordic climate – A case study // IOP Conference Series: Earth and Environmental Science 410. - 2020. DOI: 10.1088/1755-1315/410/1/01208218. Shahnewaz Md., Yuxin Pan Y., Alam M. S., Tannert T. Seismic Fragility Estimates for Cross-Laminated Timber Platform Building // Journal of Structural Engineering. - 2020. DOI: 10.1061/(ASCE)ST.1943-541X.000283419. Pavel Dobeš, Antonín Lokaj, Kristýna Vavrušová Stiffness and Deformation Analysis of Cross-Laminated Timber (CLT) Panels Made of Nordic Spruce Based on Experimental Testing, Analytical Calculation and Numerical Modeling // Buildings. - 2023. - 13(1) 200. DOI: 10.3390/buildings1301020020. He M., Sun X., Li Z., Feng W. Bending, shear, and compressive properties of three- and five-layer cross-laminated timber fabricated with black spruce // Journal of Wood Science. - 2020. DOI: 10.1186/s10086-020-01886-z21. Olsson A., Schirén W.,·Hu M. Dynamic and quasi‑static evaluation of stiffness properties of CLT: longitudinal MoE and effective rolling shear modulus // European Journal of Wood and Wood Products. – 2025. - 83:16. DOI: 10.1007/s00107-024-02185-w22. Bitiukov D.O., Bilyk S.I. Vyznachennia ta analiz fizyko-mekhanichnykh kharakterystyk balok z masyvnoi, kleienoi ta perekhresno-kleienoi derevyny (Determination and analysis of physical and mechanical characteristics of beams made of solid, glued and cross-glued wood) // Prostorovyi rozvytok: Naukovyi zbirnyk. – K., KNUBA, 2025. – Vyp. 11. – s. 265-281. DOI: 10.32347/2786-7269.2025.11.265-28123. Ternovyi M.I., Bilyk A.S., Daurov M.K. Metodyka vyznachennia vlasnykh kolovykh kolyvan stalevykh ferm pokryttia za rozrakhunkovoiu skhemoiu idealnoho dvotavra (Methodology for determining the natural circular vibrations of steel roof trusses using the calculation scheme of an ideal I-beam) // Mistobuduvannia ta terytorialne planuvannia: Nauk.-tekhn. Zbirnyk. - K., KNUBA, 2025. - Vyp. 88. – c. 346-358. DOI: 10.32347/2076-815x.2025.88.346-35824. Tonkacheiev V.H., Bilyk S.I. The ribbed-annular dome's upper tier model stability experimental studies // Strength of Materials and Theory of Structures: Scientific-and-technical collected articles. – K.: KNUBA, 2022. – Issue 108. – P. 283-294. DOI: 10.32347/2410-2547.2022.108.283-29425. Bilyk A.S., Ternovyi M.I. Chyslovi doslidzhennia koefitsiientiv dynamichnoi roboty stalevykh ferm pokryttia pryvedenykh do balkovoi konstruktsii pry dii zoseredzhenoho impulsyvnoho navantazhennia (Numerical research of the coefficients of the dynamic work of steel framing covers reduced to a beam structure under the action of a concentrated impulsive load) // Opir materialiv i teoriia sporud: nauk.-tekhn. zbirnyk. – K.:KNUBA, 2024. – Vyp. 113. – S. 265-274. DOI: 10.32347/2410-2547.2024.113.265-274