Вигин пластини з функціонально-неоднорідного матеріалу при наявності великих деформацій

Заголовок (англійською): 
Bending of a plate from a functionally heterogeneous material in the presence of large deformations
Автор(и): 
Стеблянко П.О.
Дьомічев К.Е.
Петров О.Д.
Автор(и) (англ): 
Steblyanko P.O.
Domichev K.E.
Petrov O.D.
Ключові слова (укр): 
функціональні матеріали, феноменологічна модель, великі деформації
Ключові слова (англ): 
functional materials, phenomenological model, large deformations
Анотація (укр): 
У статті розглядається задача про вигин пластини кінцевих розмірів виготовленої з функціонально-неоднорідного матеріалу при наявності великих пластичних деформацій (до 20%). Наведено характерні поля інтенсивності деформацій в районі вигину пластини. Вони побудовані з урахуванням геометрично нелінійних рівнянь та за допомогою уточнених фізичних співвідношень, що базуються на новій феноменологічній моделі поведінки матеріалу.
Анотація (англ): 
Details and elements of structures, which are made of functionally heterogeneous materials and have the property of shape memory and behave pseudo-elastically, may be under the influence of complex loads in the process of manufacturing and operation. Uneven heating of bodies in combination with force factors can lead to large deformations of the material and complex deformation processes. The existing models of the behavior of such elements do not take into account the nonlinearity of geometric relationships and are unsuitable for use with large deformations. The article deals with the bending of a plate of finite dimensions from a functionally heterogeneous material in the presence of large plastic deformations. The simulation of plate behavior is based on a nonlinear phenomenological model that describes the properties of shape memory alloys and the thermos-pseudo-plastic behavior of the material at a point. A diagram of a pseudo-elastic material consisting of three curved sections is used. The first feature of the formulation of the problem of specifying the area of geometric nonlinearity is the formulation of the boundary conditions around the support. If for a linear problem they are set only along the support line, then to refine the geometrically nonlinear solution, the zero vertical displacements of the plate points and, accordingly, the speed of movement were set in the vicinity of the area of contact with the support. The second feature of the refinement is a significant reduction in the number of coordinate integration steps (up to 5%). At the same time, in order to fulfill the condition of stability, a proportional reduction of the integration step over time is necessary. For a reliable comparison of results, it is necessary to increase the number of time integration steps while decreasing the integration steps by coordinates. This problem was solved using a sequence of numerical experiments. The third feature consists in solving the additional problem of interpolation of the required values in the nodes of the new finer grid by the corresponding value in the nodes of the main grid. This problem is solved using a two-dimensional spline function.
Публікатор: 
Київський національний університет будівництва і архітектури
Назва журналу, номер, рік випуску (укр): 
Опір матеріалів і теорія споруд, 2023, номер 110
Назва журналу, номер, рік випуску (англ): 
Strength of Materials and Theory of Structures, 2023, number 110
Мова статті: 
Українська
Формат документа: 
application/pdf
Дата публікації: 
17 Сентябрь 2023
Номер збірника: 
Розділ: 
Опір матеріалів і теорія споруд, 2023, номер 110
Університет автора: 
Інститут механіки ім. С. П. Тимошенка НАН України, вул. Петра Нестерова, 3, Київ-57, 03057, Київський міжнародний університет, вул. Львівська, 49, Київ, 03115, Україна , Дніпровський національний університет ім. О. Гончара пр. Гагаріна, 72, Дніпро́, 490
Литература: 
  1. Domichev K. Modeling the behavior of the body with pseudo-elastic-plastic material at non-stationary loading / K. Domichev, P. Steblyanko, A. Petrov // Металофізика та новітні технології, Інститут металофізики ім. Г.В. Курдюмова НАН України, 2021 – Том 43, випуск 1 – с. 107–128.
  2. Стеблянко П.А. Методы расщепления в пространственных задачах теории пластичности /П.А. Стеблянко – Kиев: Наукова думка, 1998. – 304 с.
  3. Abeyaratne R., Knowles J.K. Evolution of phase transitions / R.Abeyaratne, J.K.Knowles– Cambridge University Press, 2006. – 258 p.
  4. Shaw J.A., Kyriakides S. Thermomechanical aspects of NiTi. / J.A.Shaw, S.Kyriakides – Mechanics and Physics of Solids, 1995. – No 43, p. 1243–1281.
  5. Shaw J.A., Kyriakides, S. On the nucleation and propagation of phase transformation fronts in a NiTi alloy / J.A.Shaw, S.Kyriakides – Acta Materialia,1997. – No 45, p. 683–700.
  6. Petrov A. Development of the method with enhanced accuracy for solving problems from the theory of thermo-psevdoelastic-plasticity / А. Petrov, Yu. Chernyakov, P. Steblyanko, K. Demichev, V. Haydurov – Eastern-European Journal of Enterprise Technologies. 2018. Vol. 4/7 (94). P. 25–33.
  7. Дьомічев К.Е. Нелінійна феноменологічна модель поведінки функціонально-неоднорідних матеріалів / К.Е.Дьомічев, П.О.Стеблянко, О.Д.Петров // Вісник Черкаського національного університету ім. Б. Хмельницького. Серія Прикладна математика. Інформатика №1(1). – 2020–C. 4–12.
  8. Steblyanko P. Phenomenological Model of Pseudo-Elastic-Plastic Material Under Nonstationary Combining Loading / P. Steblyanko, Y. Chernyakov, A. Petrov, V. Loboda – Structural Integrity, Volume 8, Theoretical, Applied and Experimental Mechanics, Springer Verlag, 2019. – P. 205–208.
  9. Петров О.Д. Комп’ютерне моделювання поведінки стриженя з трилінійного двофазного матеріалу при розтягуванні / О.Д.Петров – Інформаційні технології та комп’ютерне моделювання; матеріали статей МНПК (ISBN 978-617-7468-26-3) – 2018. – Івано-Франківськ. – 2018. – С. 234–237.
  10. Дьомічев К.Е. Моделювання поведінки елементів виготовлених з матеріалів з пам’яттю форми при значних деформаціях / К.Е.Дьомічев, О.Д.Петров, П.О.Стеблянко // Проблеми обчислювальної механіки і міцності конструкцій –2020–№ 32, ДНУ ім. О. Гончара – с. 81–94.
  
References: 
  1. Domichev K. Modeling the behavior of the body with pseudo-elastic-plastic material at non-stationary loading / K. Domichev, P. Steblyanko, A. Petrov // Metalofizyka ta novitni tekhnolohiyi, Instytut metalofizyky im. H.V. Kurdyumova NAN Ukrayiny, 2021 – Tom 43, vypusk 1 – s. 107–128.
  2. Steblyanko P.A. Metody rasshcheplenyya v prostranstvennykh zadachakh teoryy plastychnosty (Splitting methods in spatial problems of the theory of plasticity) /P.A. Steblyanko – Kyev: Naukova dumka, 1998. – 304 s.
  3. Abeyaratne R., Knowles J.K. Evolution of phase transitions / R.Abeyaratne, J.K.Knowles– Cambridge University Press, 2006. – 258 p.
  4. Shaw J.A., Kyriakides S. Thermomechanical aspects of NiTi. / J.A.Shaw, S.Kyriakides – Mechanics and Physics of Solids, 1995. – No 43, p. 1243–1281.
  5. Shaw J.A., Kyriakides, S. On the nucleation and propagation of phase transformation fronts in a NiTi alloy / J.A.Shaw, S.Kyriakides – Acta Materialia,1997. – No 45, p. 683–700.
  6. Petrov A. Development of the method with enhanced accuracy for solving problems from the theory of thermo-psevdoelastic-plasticity / А. Petrov, Yu. Chernyakov, P. Steblyanko, K. Demichev, V. Haydurov – Eastern-European Journal of Enterprise Technologies. 2018. Vol. 4/7 (94). P. 25–33.
  7. D'omichev K.E. Neliniyna fenomenolohichna model' povedinky funktsional'no-neodnoridnykh materialiv (A nonlinear phenomenological model of the behavior of functionally heterogeneous materials) / K.E.D'omichev, P.O.Steblyanko, O.D.Petrov // Visnyk Cherkas'koho natsional'noho universytetu im. B. Khmel'nyts'koho. Seriya Prykladna matematyka. Informatyka #1(1). – 2020–C. 4–12.
  8. Steblyanko P. Phenomenological Model of Pseudo-Elastic-Plastic Material Under Nonstationary Combining Loading / P. Steblyanko, Y. Chernyakov, A. Petrov, V. Loboda – Structural Integrity, Volume 8, Theoretical, Applied and Experimental Mechanics, Springer Verlag, 2019. – P. 205–208.
  9. Petrov O.D. Komp"yuterne modelyuvannya povedinky stryzhenya z tryliniynoho dvofaznoho materialu pry roztyahuvanni (Computer modeling of the tensile behavior of a rod made of a trilinear two-phase material) / O.D.Petrov – Informatsiyni tekhnolohiyi ta komp"yuterne modelyuvannya; materialy statey MNPK (ISBN 978-617-7468-26-3) – 2018. – Ivano-Frankivs'k. – 2018. – S. 234–237.
  10. D'omichev K.E. Modelyuvannya povedinky elementiv vyhotovlenykh z materialiv z pam"yattyu formy pry znachnykh deformatsiyakh (Modeling the behavior of elements made of materials with shape memory under significant deformations) / K.E.D'omichev, O.D.Petrov, P.O.Steblyanko // Problemy obchyslyuval'noyi mekhaniky i mitsnosti konstruktsiy –2020–# 32, DNU im. O. Honchara – s. 81–94.